Exponential functions:

An example is

$$
f(x)=a^{x}
$$

where $a>0$. What are some of the values of this function?

$$
f(1)=a, \quad f(2)=a^{2}, \quad \text { and } \quad f\left(\frac{1}{2}\right)=\sqrt{a} .
$$

There is a particularly useful example of an exponential function, namely

$$
f(x)=e^{x}
$$

where e is the base of the natural logarithm, which is

$$
e=2.71281828 \ldots
$$

A question you might ask is why should I care about this?
If $0<a<1$ then a^{x} appears in the mathematics behind radiometric dating and a would represent what percentage of some decaying material remains after 1 second or minute or day. One that you may have heard of is carbon-14 dating, which is used to date younger non-living organic materials. For example, if some organic material dies today and contains 2.5 kg of carbon- 14 (I do not know if this is a reasonable amount of carbon-14, I suspect it is not), then the formula for the amount of carbon-14 remaining after t years is

$$
2.5\left(\frac{1}{2}\right)^{t / 5730} .
$$

So after 5730 years, there would be 1.25 kg of the carbon-14 remaining.
If $a>1$, then a^{x} appears in interest computations. The number a is usually $a=\left(1+\frac{r}{N}\right)$ where r is the interest rate and N is how many times a year interest in compounded. If your savings account compounds interest monthly, your interest rate is 2% and you start with $\$ 100$ in your account then the formula for the amount of money in your savings account at time t (measured in years) is

$$
100\left(1+\frac{.02}{12}\right)^{12 t}
$$

Logarithms:

If we want to undo x^{2} for positive x, then we just take the square root. For example, if we want to find what number satisfies

$$
x^{2}=16
$$

we just take the square root of both sides, so $x=\sqrt{16}=4$. Similarly, if we want to undo taking the square-root we square a number. So if we want to solve

$$
\sqrt{x}=4
$$

then $x=(4)^{2}=16$.
If we start with a number $x>0$, then take its square root and then square it we get back the number x. If we instead squared x first, and then take the square root we still get back x.

The logarithms do the same thing to the exponential functions. Suppose we have want to solve for b in the following equation

$$
a^{b}=x .
$$

The way we solve this is by taking the $\log _{a}$ of both sides:

$$
a^{b}=x \quad \text { and so } \quad b=\log _{a}\left(a^{b}\right)=\log _{a}(x) .
$$

On the right-hand side, we notice that $\log _{a}\left(a^{b}\right)=b$. This is how we "undo" the exponential a^{b}. If $a=e$, then we write $\log _{e}=\ln$ and if $a=10$ then we write $\log _{10}=\log$.

Similarly, if we want to solve for x and we have

$$
\log _{a}(x)=b
$$

then we take the exponential of both sides. That is

$$
x=a^{\log _{a}(x)}=a^{b} .
$$

We observe, that there was some cancellation again, that is $a^{\log _{a}(x)}=x$.

