
1. Lecture 1

Many physical systems are governed by physical laws involving rates of
change (e.g. Newton’s second law of motion states that the force upon an
object is equal to mass times acceleration, F = ma). Since rates of change
are just derivatives, the types of equations that we want to study are called
differential equations.

If a differential equation models a physical, biological or other “real-world”
situation, we call that model a mathematical model.

Question: What can be modeled by differential equations?
A: Movement (falling objects), interest rate calculations, predator/prey

relationships, the dynamics of springs and even things like the blink synchro-
nization of fireflies.

Example 1.1. Suppose you drop an object from a large height, and want
to model the velocity of the object in free fall. You’re told (neglecting some
physics technicalities) that the force of drag is proportional to the objects
velocity. What is the differential equation governing this velocity?

Solution : Let us define some things.

y(t) = position above the ground of the object at time t

v(t) =
dy

dt
= velocity of the object at time t

a(t) =
dv

dt
=
d2y

dt2
= acceleration of the object at time t

We draw a free-body diagram (here v points down because the object in
falling, positive velocity still points upwards):

Since y is position above the ground, Fgravity = −mg. The minus sign
represents that this force is in the opposite direction of “up.”

Since the force of drag is proportional to the velocity we can write that
Fdrag = −γv, where γ is some number. Here the minus sign represents that
the force of drag is in the opposite direction of velocity.
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Adding the forces together give

Ftotal = Fgravity + Fdrag = −mg − γv.
Since F = ma (Newton’s second law), and a = dv

dt we get the differential
equation:

m
dv

dt
= −mg − γv.

�

Example 1.2. Suppose there’s some field where the population of mice in-
creases by 50% every month if there were no predators. However, there’s a
group of owls that kill 10 mice per day. If t is measured in months (assumed
to be 30 days), what is the differential equation governing the population, p,
of mice.

Solution : We first ignore the owls. Let’s gather some data:

January February
100 150
200 300
300 450

.

If we carry this out more, we’ll see that if p is the population in January,
then 1.5p = p + 1

2p is the population in February. Therefore, the dp
dt = 1

2p
(again this is neglecting the owls).

We now take into effect the owls. The owls kill 300 mice per month and so
the total differential equation is:

dp

dt
=

1

2
p︸︷︷︸

birth of mice

− 300︸︷︷︸
killing of mice

.

In general if the mice increased in population by (100r)% and mice kill k
mice per month then the differential equation is

dp

dt
= rp− k.

�

We now move onto solving some of these differential equations. We have
two different ODEs:

dv

dt
= −g − γ

m
v and

dp

dt
= rp− k.
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These are both of the form:
dy

dt
= ay − b,

where a and b are numbers.
Let’s completely solve the mice problem. We have

dp

dt
=

1

2
p− 300 =

1

2
(p− 600).

This is called a separable differential equation. Dividing both sides by p−600
and multiplying both sides by dt we get

dp

p− 600
=

1

2
dt.

We now integrate both sides:

ln |p− 600| =
∫

dp

p− 300
=

∫
dt

2
=

1

2
t+ C.

We can exponentiate both sides to undo the natural logarithm

|p− 600| = e
1
2 t+C = eCet/2.

We can get rid of the absolute value by adding a ± on the right and side.
That is:

p− 600 = ±eCet/2 = Aet/2,

where A = ±eC (and cannot be 0).
Adding 600 gives

p(t) = 600 + Aet/2,

which is the general solution.
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2. Lecture 2

How can we determine the constant A? Well we need an initial value! For
example, if we said p(0) = 500 then we can say that

500 = p(0) = 600 + Ae0/2 = 600 + A,

or A = −100.
This tells us that the population decreases over time.
Combining what we have done in the previous computations we have solved

the initial value problem (IVP):

IVP:

{
dp
dt = 1

2p− 300
p(0) = 500

.

Let’s go back to the general form of the mice population/velocity differential
equations and solve an initial value prolbem there. That is we want to solve:

IVP:

{
dy
dt = ay − b

y(0) = y0
,

where y0, a and b are some numbers (and we will describe restrictions on
them later).

We first solve the differential equation part of the IVP. That is we want to
solve:

dy

dt
= ay − b = a

(
y − b

a

)
.

dy

y − b
a

= a dt∫
dy

y − b
a

=

∫
a dt

ln

∣∣∣∣y − b

a

∣∣∣∣ = at+ C∣∣∣∣y − b

a

∣∣∣∣ = eat+C = eCeat

y − b

a
= ±eCeat = Aeat

y =
b

a
+ Aeat.
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This is the general solution to the differential equation at the top of the string
of equalities.

We now have to find out A, and we use the initial value to compute A.
That is, we have

y0 = y(0) =
b

a
+ Aea·0 =

b

a
+ A.

Therefore, A = y0 − b
a . Thus

(1) y(t) =
b

a
+

[
y0 −

b

a

]
eat,

is the general solution to the initial value problem:

IVP:

{
dy
dt = ay − b

y(0) = y0
.

Before moving on, we know that A cannot be 0. What does this mean in
our situation? That means that y0 6= b

a . Another problem is when a = 0. I’ll
leave it to you to solve the IVP:

IVP:

{
dy
dt = −b

y(0) = y0
.

Example 2.1. Use (1) to solve the initial value problem:

IVP:

{
dv
dt = −g − γ

mv
v(0) = v0

.

Solution : We have a = −γ/m, b = g and y0 = v0. Plugging that in gives:

v(t) = −mg
γ

+

(
v0 +

mg

γ

)
e−γt/m.

�
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3. Lecture 3

Let’s do a concrete example.

Example 3.1. A tank contains 100 L of water and 10 kg of salt and is mixed
thoroughly. A pipe pours pure water into the tank, where it mixes instan-
taneously. To keep the tank from overflowing, there’s another pipe at the
bottom that drains the water from the tank at the same rate at which the
water is pumped in. Suppose that both the pipes flow water into or out of
the tank at a rate of 5 L per minute. Write a differential equation which
governs the quantity measured in kilograms (i.e. the mass), q, of the salt in
the tank at time t measured in minutes. Here’s a (very poor) drawing.

Solution : In words we can write:

dq

dt
=

(
rate of
salt in

)
−
(

rate of
salt out

)
.

Since only pure water comes into the tank, the rate of salt in is 0.
The rate of the salt out can be compute by(

rate of
salt in

)
=

(
density of

salt in the tank

)
×

 flow rate
of water out
of the tank

 .

Since density if mass/volume, and q is the mass of the salt in the 100L tank
we get the density of salt in the tank is q/100 with units kg/L. The flow rate
is 5L per minute and so:(

rate of
salt in

)
=

q kg

100 L
× 5 L

1 min
=

q

20

kg

min
.
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Thus the IVP we must solve is{
dq
dt = − 1

20q
q(0) = 10.

I’ll leave it to you to use (1) to write down the exact solution. �

We now state some definitions (and elaborate from what was done in lec-
ture):

A differential equation is just some equation relating the derivatives
y′, y′′, . . . , the function itself y to the time variable t (or sometimes the space
variable x).

For example these are differential equations:

d2y

dx2
+ 5

(
dy

dx

)2

− 4y = ex

and

y(5) − y′ = sin(x).

Remark 3.1. There are several different notations for derivatives.

dny

dxn
= the nth derivative of y with respect to x.

y′, y′′, y(n) = respectively, the first, second and nth derivative of y.

ẏ, ÿ = respectively, the first and second derivative of y

(generally with respect to time).

The order of a differential equation is the order of the highest derivative
which is included in the equation. For example if we write a differential
equation as

F (x, y, y′, y′′, . . . , y(n)) = 0,

for some function F then the differential equation is of order n.
A differential equation is linear if it can be written in the form:

a0(x)y(n) + a1(x)y(n−1) + · · ·+ an−1(x)y′ + an(x)y = g(x),

where a0, a1, . . . , an and g are functions involving only x. In fact, that differ-
ential equation is an nth order linear differential equations.



8

Example 3.2. Which of the following are linear differential equations? If
they are not, then why not? What is the order of the differential equation?
Write the differential equations in the form:

F (x, y, y′, . . . , y(n)) = 0.

a) y′′ + sin(x)y = 6
b) (y′)2 − y2 = 0
c) ety + eyy′ = ln(t)

d) y′′ + 6y − 6y(3) = 0
e) y′′ + 2y′ − 4y = sin(y)

Solution :

a) This is a linear second order differential equation and

F (x, y, y′) = y′′ + sin(x)y − 6.

b) This is a non-linear first order differential equation and

F (x, y, y′) = (y′)2 − y2.
It is non-linear because we square both the y′ term and y term.

c) This is a non-linear first order differential equation and

F (x, y, y′) = ety + eyy′ − ln(t).

It is non-linear because there is a term involving ey.
d) This is a linear 3rd order differential equation and

F (x, y, y′, y′′, y(3)) = y′′ + 6y − 6y(3).

e) This is a non-linear differential equation of order 2 and

F (x, y, y′, y′′) = − sin(y) + y′′ + 2y′ − 4y.

�

Back to definitions (just 1 more).
A separable differential equation is a first order differential equation if

we can write
dy

dt
= f(t)g(y)

for some functions f and g.
For example,

dy

dt
= y2te3t+4y = te3t · y2e4y

is a separable differential equation.
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Example 3.3. Solve the separable differential equation:

e2xy
dy

dx
= ey + ey−2x.

Solution : We first have to write this in the form
dy

dx
= f(x)g(y).

To get there we start by factoring the RHS:

ey + ey−2x = ey(1 + e−2x).

We can then divide everything by ye2x to get:

dy

dx
=
ey

y
· (e−2x + e−4x).

We now solve this by seperating variables:

ye−y dy =
(
e−2x + e−4x

)
dt.

Integrating the LHS requires using integration by parts:∫
ye−y dy = −ye−y −

∫
−e−ydy = −ye−y − e−y,

where we used u = y and dv = e−y dy and the IBP formula∫
u dv = uv −

∫
v du.

The RHS is easier, and becomes:∫ (
e−2x + e−4x

)
dx = −1

2
e−2x − 1

4
e−4x + C.

There is no constant of integration on the LHS because we put the constant
of integration on the RHS.

Combining these into one equation we get:

−ye−y − e−y = −1

2
e−2x − 1

4
e−4x + C,

this cannot be solved for y in a nice way so we’ll simplify as much as we can:

−ye−y − e−y = −1

2
e−2x − 1

4
e−4x + C

−(y + 1)e−y =
−1

4

(
2e−2x + e−4x + C

)
different C

4(y + 1)e−y = 2e−2x + e−4x + C.
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�

We now outline a general method to solve the seperable equation:

dy

dt
= f(t)g(y).

Step 1: Divide both sides by g(y) and multiply both sides by dt to get:

dy

g(y)
= f(t) dt.

Step 2: Integrate both sides, putting the constant of integration only on the
side including the t terms:∫

dy

g(y)
=

∫
f(t) dt+ C.

Step 3: If possible, solve for y. If you cannot do that then write the equation
in implicit form.
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4. Lecture 4

Last time we covered separable equations, those of the form

dy

dt
= f(t)g(y).

Those are nice in the sense that we have a general algorithm to solve the
differential equation. The solutions may not be in the nicest form (i.e. we
have to leave the equation in a weird implicit form instead of explicitly solving
for y), but at least we can write down some equation that works.

Under certain conditions (which we’ll mention later) you can show that
a solution exists and is unique, but it is still hard to write down an actual
solution. For example, currently we do not know how to solve the differential
equation:

2
dy

dt
= 6− 4t− y.

We’ll learn how to solve this, but in the mean time you can check that
y(t) = Ae−2t + 14− 4t is a solution.

In the mean time we want to find some characteristic properties of what the
solution to that differential equation may be. There are (roughly speaking)
two ways we can get some properties of the solutions to first order differential
equations when an explicit solution is not known:

• Graphically using these things called direction fields or slope fields.
• Numerically using something called Euler’s method. There are more

advanced methods which are called Runge-Kutta methods which will
not be covered in this course.

Let’s start by doing them graphically. Here is the direction field for the
differential equation

y′ = 3− 2t− 1

2
y :
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Figure 1. Slope field for y′ = 3− 2t− 1
2
y.

Of course, computers are much better at this than humans are, which will
be more evident below, when I include a hand-drawn example. Professor Dar-
ryl Nester at Bluffton University’s website has a great online slope-field gra-
pher which is available at https://bluffton.edu/homepages/facstaff/

nesterd/java/slopefields.html

Remark 4.1. I will not ask you to draw a slope field from scratch with as
much detail as detail as the above example. If one is asked, it will just be
to get the idea of what’s happening with a solution, i.e. when is y′ positive,
negative or zero or if y′ does or does not depend on t.

In general how do we draw a slope field for a general first order differential
equation, say y′ = f(t, y)? There are roughly 3 steps:

Step 1: Draw your axis and mark units in an appropriate manner.
Step 2: Mark grid points at which you will draw a small line segments.
Step 3: At a grid point (t0, y0), make a small line segment with slope f(t0, y0).

https://bluffton.edu/homepages/facstaff/nesterd/java/slopefields.html
https://bluffton.edu/homepages/facstaff/nesterd/java/slopefields.html
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You can see below my slope field for the differential equation dp
dt = 1

2p−300.

Figure 2. Computer slope field for p′ = 1
2
p− 300.

Figure 3. My hand-drawn slope field for p′ = 1
2
p− 300.

Moving towards numerical solutions to differential equations we ask our-
selves 3 questions:

(1) Can we carry out the linking of tangent lines in a slope field picture in
a straightforward and systematic way?

(2) If we can, is the resulting piece-wise linear function close to an actual
solution?

(3) Can we measure the accuracy?
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In this class we won’t discuss question 3 much, but under certain reasonable
conditions we can measure the accuracy. The answer to the first question is
a resounding yes. Although the formulas are a little messy, they can be done.

Let’s start by doing things graphically and locally. Consider the situation
where y(t0) = y0 and y solves the differential equation

y′ = f(t, y).

If ∆t is a small number, then how do we estimate y(t0 + ∆t)? Let’s look
at the slope field (and ignore all the slope lines other than at the grid point
(t0, y0)). The only line segment drawn below is has slope f(t0, y0).
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5. Lecture 5

Euler’s Method: Often, explicitly solving the initial value problem y′ =
f(t, y) and y(t0) = y0 is impossible, but we still want to approximate solu-
tions. Last time we discussed slope fields, and now we will discuss a numerical
method to solve this.

Let’s start with a Math 124 example. That is, we suppose y(t) = g(t) and
y(t0) = y0. The tangent line that goes through the point (t0, y0) can be found
explicitly:

The approximating line has a slope of g′(t0) and goes through the point
(t0, y0). Using the point-slope formula we get the tangent line is:

tangent line is: y0 + g′(t0) · (t− t0).

And this is a good approximation in some neighborhood of t0, i.e. for |h| ≤ ∆t
we have:

y(t0 + h) ≈ y0 + g′(t0) · (t0 + h− t0) = y0 + g′(t0) · h.

We reprint the photo from the last lecture:
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.

We guess that y0 + ∆y should be approximately y(t0 + ∆t), that is

y(t0 + ∆t) ≈ y0 + ∆y.

Using the using the equation for the slope of a line, we can say that if

∆y

∆t
=
y0 + ∆y − y0
t0 + ∆t− t0

= slope of the line = f(t0, y0).

Multiplying the outermost terms by ∆t we get

∆y = f(t0, y0) ·∆t.
If t = t0 + ∆t (for a small ∆t) then we guess that the solution to the initial

value problem:

IVP:

{
dy
dt = f(t, y)

y(t0) = y0
,

is approximately

y(t) ≈ y0 + f(t0, y0) · (t− t0).
Let’s work through an example together, before discussing the general

method:

Example 5.1. Suppose that y′ = 3 + 2t and y(1) = 0. Estimate, using
Euler’s method, y(2) using ∆t = 1, 12 or 0.2.

Solution : Using the approximation y(t) ≈ y0 + f(t0, y0) · (t − t0), and in
particular y(t0 + ∆t) ≈ y0 + f(t0, y0) ·∆t. We will use this equation over and
over.

∆t = 1:

y(2) ≈ 0 + (3 + 2 · 1) · 1 = 5.
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∆t = 1
2 .

y(1.5) ≈ 0 + (3 + 2 · 1) · 0.5 = 2.5

y(2) ≈ 2.5 + (3 + 2 · 1.5) · 0.5 = 2.5 + 3 = 5.5

∆t = 0.2

y(1.2) ≈ 0 + (3 + 2 · 1) · 0.2 = 1

y(1.4) ≈ 1 + (3 + 2 · 1.2) · 0.2 = 2.08

y(1.6) ≈ 2.08 + (3 + 2 · 1.4) · 0.2 = 3.24

y(1.8) ≈ 3.24 + (3 + 2 · 1.6) · 0.2 = 4.48

y(2) ≈ 4.48 + (3 + 2 · 1.8) · 0.2 = 5.76

We can actually solve this differential equation:

y(t) =

∫ t

1

(3 + 2t) dt = 3t+ t2 − 4

and so y(2) = 6.
�

We can actually create a piece-wise linear approximation to the actual
solution. That is suppose we are given the following information:

dy

dt
= f(t, y), y(t0) = y0, ∆t is given.

We want to find an approximation to the solution of the differential equation
for t0 ≤ t ≤ tN = t0 +N∆t. We use the above approximations over and over
again.

Let t1 = t0+∆t, t2 = t0+2∆t, t3 = t0+3∆t and so on until tN = t0+N∆t.
Using the above computations we know that approximately:

y(t) ≈ y(tj) + f(tj, y(tj)) · (t− tj) for tj ≤ t ≤ tj+1.
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This gets quite ugly, so what we’ll do is define

y1 = y0 + f(t0, y0) ·∆t
y2 = y1 + f(t1, y1) ·∆t

...

yj+1 = yj + f(tj, yj) ·∆t
...

yN = yN−1 + f(tN−1, yN−1) ·∆t.

Then the approximate solution (in words) is

y(t) ≈


the y-value on the line

between (tj, yj) and (tj+1, yj+1)
evalutated at t when
t is between tj and tj+1

 .

Here’s a (poorly) hand-drawn image:

Let’s consider another initial value problem:

IVP:


dy

dt
= f(t, y) = 3− 2t− 1

2y

y(0) = 0

Let’s use Euler’s method to approximate a solution. Since y(0) = 0 we get
t0 = 0 and y0 = 0. The only thing else we have to specify is ∆t, and let’s set
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this up as ∆t = 0.1 and N = 10. This is a lot of work to do by hand, but
with the help of a calculator is not that bad if we are careful.

Let’s start with compute (t1, y1) by hand. We know that f(t0, y0) = 3 and
∆t = .1 so we get (t1, y1) = (0.1, 0.3). For (t2, y2) we get

y2 = y1 + f(t1, y1) ·∆t = 0.3 +

(
3− 2 · 0.1− 1

2
· 0.3

)
· 0.1 = 0.565

and so (t2, y2) = (0.2, 0.565). If we compute the rest, we’ll get the following
table:

the index j value of tj value of yj
0 0 0
1 0.1 0.3
2 0.2 0.565
3 0.3 0.79675
4 0.4 0.9969125
5 0.5 1.16706688
6 0.6 1.30871353
7 0.7 1.42327785
8 0.8 1.51211396
9 0.9 1.57650826
10 1.0 1.61768285

.

As you can see the number get uglier as we go through the list.
On the next page, I include two images, one is the approximate solution

when ∆t = 0.1 and N = 20 (I change it for a larger picture) and y(0) = 0.
As you’ll see the images are fairly close to each other, and some of the details
of the actual solution are apparent in the Euler’s method solution.
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Figure 4. Euler’s Method

Figure 5. Actual solution
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Here is the Python code for the above simulations:

import numpy as np

import pandas as pd

def exportToCSV(dataSet, filename):

my_df = pd.DataFrame(dataSet)

my_df.to_csv(filename+".csv", index=False, header=False )

def f(t,y):

return 3-2*t-float(y)/2

def solution(start,end,dt):

size = (float(end)-float(start))/dt

size = int(size)

t = np.linspace(0,end,size)

y = np.zeros(np.size(t))

for j in range(0,size):

y[j] = 14-4*t[j]-14*np.exp(-float(t[j])/2)

return joinXandY(y,t)

def joinXandY(X,t):

l = np.size(X)

data = np.array([(t[j],X[j]) for j in range(0,l)])

return data

def EulerMethod(dt,t_0,y_0,N):

t = np.linspace(t_0,t_0+N*dt,int(N+1))

y = np.zeros(np.size(t))

y[0] = y_0

for j in range(1,N+1):

y[j] = y[j-1]+ f(t[j-1],y[j-1])*dt

return joinXandY(y,t)

X = EulerMethod(.1,0,0,20)

Y = solution(0,2,.01)

exportToCSV(X,"EulerMethod")

exportToCSV(Y,"Solution")
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6. Lecture 6

There is one last note I want to make on Euler’s method. While using
Euler’s method you must keep track of all the data you have, and do that
in a systematic way. When I do Euler’s method by hand I generally keep a
table of information, sort of like the one included a few pages ago. Typically,
I include more information than that. For example I would include a column
for finding f(t, y) which would allow me to lower the likelihood of making
an algebraic mistake. For example you can have a table with the following
columns:

index: j tj yj f(tj, yj) ∆y the next y: yj+1

This is not the only way of organizing the information, you can omit columns
as you see fit or even add additional columns.

We are now moving on to linear first order differential equations.
Let’s break down what these equations “look like.” The first order part of
the differential equation means that we deal with equations involving y′ and
the linear part means that we can write it in the form:

y′ + p(t)y = g(t),

where p and g are functions only of the time variable.
We have already encountered these when p and g are constants. This was

done in Lecture 2. The way we solve these equations is by using something
called an integrating factor. We’ll use an integrating factor to solve a
specific case.

Example 6.1. Solve the differential equation:

dy

dt
+

1

2
y =

1

2
et/3.

Solution : To use the method of integrating factors we multiply the entire
equation by a function µ(t) to give us:

µ(t)y′ +
1

2
µ(t)y =

1

2
µ(t)et/3.

This may make the equation look harder, but if we can choose µ(t) so that

the left-hand side is
d

dt
[µ(t)y] then we would be able to integrate both sides

to get the solution. Elaborating on this a little, we suppose that we can find
a µ

d

dt
[µ(t)y] = µ(t)y′ +

1

2
µ(t)y =

1

2
µ(t)et/3.
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IF a µ exists (and that is a big if) then we can multiply the outermost terms
by dt and integrate to get:

µ(t)y =

∫
d(µ(t)y) =

∫
1

2
µ(t)et/3 dt,

which will give us:

y =
1

µ(t)

∫
1

2
µ(t)et/3.

Let’s now compute the derivative of µ(t)y. By the product rule we get:

d

dt
[µ(t)y] = µ(t)y′ + µ′(t)y.

We want this to be equal to µ(t)y′+ 1
2µ(t)y. The y′ terms already match up,

so we just want to solve

1

2
µ(t)y = µ′(t)y which is µ′(t) =

1

2
µ(t).

We know how to solve the differential equation:

dµ

dt
= µ′ =

1

2
µ,

by separating variables. So

dµ

dt
=

1

2
µ

dµ

µ
=

1

2
dt

ln |µ(t)| =
∫
dµ

µ
=

∫
1

2
dt =

1

2
t+ C

|µ(t)| = eCet/2

µ(t) = ±eCet/2 = Aet/2.

We don’t need a general solution to this differential equation, we just need
1 particular solution so we can choose A = 1.

Now we get to:

et/2y =

∫
1

2
et/2et/3 dt =

∫
1

2
e5t/6 dt

=
3

5
e5t/6 + c.
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Dividing everything by et/2 and using properties of exponents yields:

y =
3

5
et/3 + ce−t/2.

�

We can actually extend that method to equations of the form:

y′ + ay = g(t).

We multiply everything by µ = µ(t) chosen so that:

d

dt
[µy] = µy′ + aµy = µg(t),

but actually differentiating µy gives

d

dt
[µy] = µy′ + µ′y,

and so µ′ = aµ, so we can take µ(t) = eat.
That means

d

dt
(eaty) = eatg(t) which means eaty =

∫
eatg(t) dt,

where that integral has a constant of integration that will appear. We can
get arround that by doing:

eaty =

∫ t

t0

easg(s) ds+ c.

Question: What is c?
Therefore:

y = e−at
∫ t

t0

easg(s) ds+ ce−at.
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7. Lecture 7

Let’s review integrating factors. Consider the differential equations:

t3y′ + 3t2y = cos(t)

e−tv′ − e−tv = 4t2 + e2t.

The left hand sides are the derivatives of the following:

(t3y) and e−tv.

Thus we get:

t3y =

∫
cos(t) dt = sin(t)+c and e−tv =

∫
4t2+e2t dt =

4

3
t3+

1

2
e2t+c.

From there we can easily solve for the general solutions.
Let’s return to the general problem:

y′ + p(t)y = g(t).

We carry through everything the same way.

(1) Multiply by µ = µ(t):

µy′ + µp(t)y = µg(t).

(2) Differentiate (µy):

d

dt
[µy] = µy′ + µ′y

and match it with

µy′ + µp(t)y.

(3) Isolate µ′ by looking that y “coefficients”:

µ′ = µp(t).
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(4) Solve for a particular solution of µ:

dµ

dt
= µp(t)

dµ

µ
= p(t) dt

ln |µ| =
∫
p(t) dt

|µ| = exp

(∫
p(t) dt

)
µ = ± exp

(∫
p(t) dt

)
,

where exp(x) = ex. We can ignore the ± term to get

µ(t) = exp

(∫
p(t) dt

)
.

(5) Since we now have a µ that works we have to solve:

d

dt
[µy] = µg(t),

which is done by

µy =

∫ t

t0

µ(s)g(s) ds+ c.

(6) Solve for y to get

y =
1

µ(t)

[∫ t

t0

µ(s)g(s) ds+ c

]
,

which is the simplified version of

y(t) = exp

(
−
∫
p(t) dt

)[∫ t

t0

exp

(
−
∫
p(s) ds

)
g(s) ds+ c

]
.

Example 7.1. Solve the initial value problem:

IVP:

{
y′ = 2ty + t

y(0) = 1
.

Solution : We have:

y′ − 2ty = t.
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That means p(t) = −2t and so the integrating factor must be:

µ(t) = exp

(∫
p(t)

)
= exp

(
−t2
)
,

where we can ignore the constant of integration inside exp.
We now have:

(µy)′ = tµ(t) = te−t
2

.

Multiplying by dt on both sides and integrating gives

e−t
2

y =

∫
te−t

2

dt,

where there is a constant of integration hidden in the right-hand side.
We can write one solution to the RHS above as:∫ t

0

se−s
2

ds+ c.

Using u = −s2, du = −2s ds makes the integral equal to∫ −t2
0

−1

2
eu du =

−1

2
eu
∣∣∣∣u=−t2
u=0

=
1

2

(
1− e−t2

)
.

This gives us:

e−t
2

y =
1

2

(
1− e−t2

)
+ c = c2 −

1

2
e−t

2

.

Using y(0) = 1 we get:

1 = e0y(0) = c2 −
1

2
e0 = c2 −

1

2

or, c2 = 3
2 .

Thus the solution to the initial value problem is:

y(t) =
3

2
et

2 − 1

2
.

�

Example 7.2. Solve the differential equation:

y′ + y = 5 sin(t).
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Solution : We have p(t) = 1 and so µ(t) = et. Thus we must integrate
(technically 5× this): ∫

et sin(t) dt.

We use integration by parts with u = et and dv = sin(t) dt. This gives:∫
et sin(t) dt = − cos(t)et +

∫
cos(t)et dt.

We again use integration by parts to get:∫
cos(t)et dt = sin(t)et −

∫
sin(t)et dt.

Therefore: ∫
et sin(t) dt = sin(t)et − cos(t)et −

∫
sin(t)et dt,∫

sin(t)et dt =
et

2
(sin(t)− cos(t)) + C,

where we add the constant of integration because we are doing an indefinite
integral on the left-side so we know there must be a “+C” term on the right-
hand side. Therefore:

ety =
5

2
(sin(t)− cos(t))et + c

which implies

y =
5

2
(sin(t)− cos(t)) + ce−t.

�

Example 7.3. Find the integrating factor for the following ODE’s

(1) y′ − y = 2tet

(2) ty′ − 2y = t for t > 0.
(3) ty′ + (t+ 1)y = 7 for t > 0.
(4) y′ − 6y = −t2y′ + 4et.
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8. Lecture 8

Here is the problem we ended class with during Lecture 7:
5. A small island in the Pacific is having a problem with its invasive rat
population. The residents of the island notice that the rat population
is growing at a rate proportional to its own size, increasing in size by
a factor 2 every 8 months. To counter this, the residents bring in a
shipment of cats, who upon arrival catch and kill rats at an initial
rate of 625 a month. However, the cats grow more skilled in their rat-
catching efforts as time goes on, and as such the number of rats they
catch increases by 25 every month. The cats arrive at the beginning of
the year, when there are 3800 rats on the island.
Set up an inital value problem for the population P (t) of rats at time
t in months. (DO NOT SOLVE).

Let’s work through a solution to part (a) together. We can write in words
that:

dP

dt
= reproduction rate− killing rate.

Let’s isolate just the reproduction rate first. That is, let S(t) be the number
of rats on the island at time t IF THERE WERE NO CATS on the island.
Then we would have:

dS

dt
= reproduction rate.

The problem states that the rats reproduce at a rate proportional to its own
size and so we can write:

dS

dt
= rS or, after solving S(t) = Aert.

The problem also states that every 8 months the rat population will double
(if there is no killing by the cats). In an equation, this means:

S(t+ 8) = 2S(t)

Aer(t+8) = 2Aert

Aer(t+8)

Aert
= 2

e8r = 2.

Solving for r gives r = 1
8 ln(2).

The problem states that the cats initially catch 625 rats per month but
then increase that number by 25 rats per month. That means by month t,
the cats kill 625 + 25t rats.
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Finally, there are 3,800 rats at the start of the year.
We thus arrive at the initial value problem:

dP

dt
=

ln 2

8
P − (625 + 25t), P (0) = 3800.

We now turn to the topic of §2.3, Modeling with First Order Equations.
Differential equations are useful. For mathematicians differential equations

just always seem to pop up in areas of research.
For non-mathematicians differential equations are useful because it is easier

to change parameters in some equation and solve that equation than it is to
rerun an experiment with different conditions. This is both cheaper and more
time-efficient. This is not perfect. There is a downside with this process.
Physical systems are not always perfect, these mathematical models are just
an approximate description of the actual reality. When you mix chemicals the
reactions don’t happen instantaneously, some happen really fast but there is
a small delay.

We’ll walk through some examples together in class, and also I’ll type up
more than what we cover in class for extra review.

Example 8.1. Louis wants to buy a home. He can afford to spend no more
than $1500 per month on a mortgage payment. Unfortunately, the only banks
that will loan to him have a weird policy. They’ll give him a loan with an
interest rate of 6% compounded continuously, but they take money out of his
bank account at a continuous rate as well. For simplicity, we assume that
there are 30 days per month. What is the maximum loan he can take out
for a 30-year mortgage. (Alternatively, we can think of Louis as borrowing
money from a bank that uses the Ethopian calendar and completely shuts
down for during the intercalary month of Paguemain).

Solution : Let M(t) denote the amount of money that Louis owes t years
into his mortgage. We want to figure out what M(0) can be if M(30) = 0.

Let’s write a differential equation in words:

dM

dt
= interest− payments.

Since interest accrues continuously, the interest term looks like interest =
rM where r is the interest rate. Moreover, each year Louis pays exactly

https://en.wikipedia.org/wiki/Ethiopian_calendar
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12 × 1500 = 18, 000 dollars. Thus the payment term is payment = 18000.
This makes the differential equation

dM

dt
= .06M − 18000.

This is a separable differential equation which we know how to solve.
We go through the steps:

dM

dt
= .06M − 18000

dM

.06M − 18000
= dt

1

0.06
ln |0.06M − 18000| =

∫
dM

.06M − 18000
=

∫
dt = t+ C

ln |.06M − 18000| = .06t+ C

|.06M − 18000| = e.06t+C = eCe.06t

.06M = 18000± eCe.06t

M(t) = 300, 000 + Ae.06t

where

A =
±eC

0.06
.

We now must find A using the initial condition which is (in words) the
mortgage is paid off in 30 years. So

0 = M(30) = 300, 000 + Ae0.06·30 = 300, 000 + Ae1.8.

Therefore,

A = −300, 000

e1.8
≈ −49, 589.67 .

From here we get

M(t) = 300, 000− 49, 589.67e0.06t.

So

M(0) = 300, 000− 49, 589.67 = 250, 410.33

is the maximum loan he can take from the bank. �
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Example 8.2. Important archeological research is based on radiocarbon dat-
ing, particularly of carbon-14. This can be used to determine the age of some
plant remains up to 50,000 years after the vegetation dies. The half-life of an
isotope is defined as the amount of time it takes for half of large collection
of that isotope to decay into something else. The half-life of carbon-14 is
approximately 5,730 years. An substance which undergoes radioactive de-
cay, decays at a rate proportional to the amount of the substance. That is
Q′ = −rQ where r is the rate of decay which depends on the type of particle
and Q is the quantity (i.e. mass) of the substance. Find the r value for
carbon-14.

Solution : Let Q be the quantity of carbon-14. We know that

Q(5730) =
1

2
Q(0),

since every 5730 years half of a sample of carbon-14 will decay. We can show
that

Q(t) = Q0e
−rt

where Q(0) = Q0. Therefore, we get:

Q0e
−r·5730 = Q(5730) =

1

2
Q0.

Which means

e−r·5730 =
1

2
.

Taking ln’s and dividing by −5730 gives:

r =
− ln(1/2)

5730
=

ln 2

5730
≈ 1.21× 10−4.

�
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Example 8.3. Suppose a population of bacteria in a culture grows at a rate
proportional to the number of bacteria present at time t. After 3 hours it is
observed that there are 400 bacteria. After 10 hours 2000 are preset. What
is the initial number of bacteria?

Solution : Let B(t) be the number of bacteria present at time t. It says
that B increases at a rate proportional to the number of bacteria so

B′ = rB where r is a proportionality constant

You can solve ODE by seperation of variables, and we can see it gives

B = Aert.

Here there are two unknowns A and r. We do have two relations that we
know B(3) = 400 and B(10) = 2000. Using these we get the equations:

Ae3r = 400 andAe10r = 2000.

We can divide the equations to get

e7r =
Ae10r

Ae3r
=

2000

400
= 5

we can solve for r to get

r =
1

7
ln 5 ≈ 0.23

Now using B(3) (or B(10)) we can find

Ae3·(0.23) = 400 or A =
400

e0.23
≈ 201.

�
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Example 8.4. A skydiver weighing 180 lbs (including equipment) jumps out
of a plane from a height of 5,000 ft and opens the parachute after 10 seconds
of free fall. Assume the magnitude of the force due to air resistance is 3

4 |v|
without a parachute, but is 12|v| when the parachute is open. Measure v is
ft per second. Use g = 32 ft/s.

(1) Find the speed of the skydiver when the parachute opens.
(2) Find the distance traveled before the parachute opens.
(3) What is the terminal velocity after opening the parachute?

Solution :

(1) Let y(t) be the altitude in feet at time t seconds. Then v = y′ is the
velocity and a = v′ is the acceleration.

The forces are

F = −mg − 3

4
v

The mg terms is negative because the positive direction for y is upwards
and the force of gravity points downwards. The 3

4v term has a minus
sign in front because air-resistance opposes motion, that is the force of
drag points in the opposite direction of velocity.

The term mg is precisely the weight of the skydiver and equipment
mg = 180 and g = 32 ft/s and so the mass is

m = 180/32 =
45

8
.

Using Newton’s second law we get:

mv′ = −mg − 3

4
v or v′ = −32− 2

15
v.

This is both a separable ODE and linear first order ODE so we can
solve it either way. Let’s do integrating factors:

v′ +
2

15
v = −32.

The integrating factor is

µ(t) = exp

(∫
p(t) dt

)
= e

215t
.

Therefore:

d

dt

(
e2t/15v

)
= e2t/15

dv

dt
+ e2t/15v = −32e2t/15
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Thus

e2t/15v =

∫
−32e2t/15 dt = −240e2t/15 + C.

That means

v = −240 + Ce−2t/15.

Since the skydiver falls, v(0) = 0 and this tells us that C = 240.
When the parachute opens at t = 10 seconds we have

v(t) = −240 + 240e−2·10/15 ≈ −176.7ft/s.

Since speed is the absolute value of velocity we have

the speed when the parachute opens is 176.7
ft

s
.

(2) Distance traveled is
∫
|v(s)| ds. Thus

distance =

∫ 10

0

∣∣∣240e−2t/15 − 240
∣∣∣ dt

=

∫ 10

0

240− 240e−2t/15 dt

= 240t+ 1800e−2t/15
∣∣∣∣t=10

t=0

=
(

2400 + 1800e−4/3
)
− (0 + 1800)

≈ 600 + 474.5 = 1074.5

(3) To simplify the equations, let’s reset time at t = 0 when the parachute
opens. Changing the differential equation appearing in part 1, gives:

45

8
v′ = −180− 12v,

with the intial condition v0 = −176.7. Rearranging the differential
equation it becomes

v′ +
32

15
v = −32,

which means the integrating factor is µ(t) = e32t/15.
Therefore we can get

e32t/15v =

∫
−32e32t/15 dt = −15e32t/15 + C.
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Meaning
v(t) = −15 + Ce−32t/15.

Using v(0) = −176.7 gives

−176.7 = −15 + Ce0 and C = −161.7.

Therefore
v(t) = −15− 161.7e−32t/15.

There terminal velocity is

lim
t→∞

v(t) = lim
t→∞

(
−15− 161.7e−32t/15

)
= −15.

�
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9. Lecture 9

An autonomous differential equation is a differential equation of the form:

y′ = f(y).

Since y′ does NOT depend on t, the slope fields are translation invariant, i.e.
the slope only changes as y changes. Autonomous differential equations often
show up in population dynamics problems.

If f(c) = 0 then y = c is a solution to the differential equation since dy
dt = 0

and f(c) = 0 as well. If f(c) = 0, then y = c is an equilibrium solution.
The behavior of f nearby, determines something called the stability of the
solution.

We can study the behavior of solutions to the differential equation y′ = f(y)
by looking at the behavior of f . By looking at where f(y) is positive, negative
or zero we can study whether or not y is increasing or decreasing.

Example 9.1. Consider the autonomous differential equation

y′ = 3y(1 + y)(1− y)2.

If y(0) = y0, then for what values of y0 will the solution be increasing, de-
creasing or constant?

Solution : This example is f(y) = 3y(1+y)(1−y)2. Instead of solving this
differential equation explicitly, we’ll just look at the function f . We know
that f(0) = f(−1) = f(1) = 0 and so we just have to find out when f is
positive and negative. By the intermediate value theorem, we know that if
f(a) > 0 and f(b) < 0 then for some c between a and b, f(c) = 0.

We can see that f(.5) > 0, f(−.5) < 0, f(−2) > 0 and f(2) > 0 so the
graph must look something like:

As you can tell, we don’t have any scale on the vertical axis. We don’t
actually need that to get information about solutions. Specifically, we don’t
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need to know what the actual values of f are, we just need to know the sign.
For those curious, here is a graph of the function f :

Once we know the signs of f we can draw something called a phase line
diagram which looks like this:

Solutions cannot cross these phase lines. That means if y0 is between 0 and
1 then 0 < y(t) < 1 for all t.

Let’s analyze what’s happening in the phase line diagram. When y0 > 1
then y′ is always positive, so y increases with t, in fact y(t)→∞ as t→∞.

If 0 < y0 < 1 then y′ > 0 so the solution increases. Since a solution cannot
cross the phase lines, the solution y(t) converges to 1 as t→∞.

If −1 < y0 < 0 then y′ < 0 and so the solution decreases. Since a solution
cannot cross the phase lines, y(t)→ −1 as t→∞.

If y0 < −1 then y′ > 0 and so y(t) increases towards −1 as t→∞.
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That means solutions look something like the following:

Here is a graph of the actual direction field along with some of the integral
curves (a picture of a solution to the differential equation) drawn:

Since solutions which start near −1 will converge to −1 as t → ∞ we call
y = −1 a stable solution.

Since solutions which start near 0 will move away from 0 we call 0 an
unstable solution.

Since some solutions which start near 1, will converge to 1 while some will
go away from 1 we call y = 1 a semi-stable solution. �
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Let’s jump back to studying general autonomous differential equations.
Suppose that

y′ = f(y),

we want to find out which equilibrium solutions are stable, and which are
unstable and semi-stable. The first thing we do is find the roots of f , that is
the c’s such that f(c) = 0. The next thing we can check is whether or not
f ′(c) is positive, negative or 0.

If f ′(c) > 0 then the solution is unstable, if f ′(c) < 0 the solution is stable.
If f ′(c) = 0 then we cannot tell whether the solution is stable, unstable or
semi-stable (in fact there are examples where it could be either).
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10. Lecture 10

In this lecture we’ll cover constant coefficient second order differen-
tial equations. These are equations of the form

ay′′ + by′ + cy = 0.

Let’s start with a simple example. Suppose

y′′ − y = 0.

This means that the second derivative of y with respect to t is y itself. You
probably know two functions that satisfy this differential equation. For ex-
ample, y(t) = 2et and y(t) = 5e−t both satisfy the above differential equation.
In fact, we can write the general formula for a solution as

y(t) = Aet +Be−t,

and since there are two unknowns, we need to know to two initial values.

Example 10.1. Solve the initial value problem y′′ − y = 0
y(0) = 2
y′(0) = −1

.

Solution : The general solution is of the form y(t) = Aet + Be−t. By
differentiating, we get y′(t) = Aet−Be−t. Evaluating these two equations at
0 gives two different equations

2 = y(0) = Ae0 +Be0 = A+B

−1 = y′(0) = Ae0 −Be0 = A−B
We can solve these equations by, for example, adding the two equations to-
gether to get

1 = 2A or A =
1

2
.

This then allows us to find

B +
1

2
= 2 so B =

3

2
.

�

Let’s move solving the general constant coefficient equation:

ay′′ + by′ + cy = 0.
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We suspect that ert is a solution for some number r. Let’s compute what
ay′′ + by′ + cy is when y = ert.

Well

(ert)′ = rert and
(
ert
)′′

= r2ert.

Thus

ay′′ + by′ + c = ar2ert + brert + cert =
(
ar2 + br + c

)
ert.

Therefore, if we want y = ert to solve the differential equation ay′′ + by′ +
cy = 0, then we need

0 = (ar2 + br + c)ert.

Since ert is never zero, we must have

ar2 + br + c = 0.

Roughly speaking, the equation differential equation

ay′′ + by′ + cy = 0

boils down to finding the roots of the polynomial

ar2 + br + c = 0.

We call that above polynomial the characteristic equation.
Assume that the roots of the characteristic equation ar2+br+c = 0 has two

distinct roots r1 6= r2. Then the general solution of the differential equation

ay′′ + by′ + cy = 0

is

y(t) = c1e
r1t + c2e

r2t.

The important thing is r1 6= r2. If r1 = r2 is NOT the general solution, we’ll
cover this more later this week.

Example 10.2. Find the general solution to the differential equation

y′′ + 5y′ + 6y = 0.

And then solve the initial value problem y′′ + 5y′ + 6y = 0
y(0) = 2
y′(0) = 3

.
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Solution : The characteristic equation is

r2 + 5r + 6 = (r + 2)(r + 3) = 0.

Thus
y(t) = Ae−2t +Be−3t

solves the differential equation.
Using the initial values

2 = y(0) = A+B

3 = y′(0) = −2A− 3B.

This can be solved explicitly for

A = 9 and B = −7.

Therefore the solution to the solution to the initial value problem is

y(t) = 9e−2t − 7e−3t.

�

Example 10.3. Find the solution to the initial value problem 2y′′ + 2y′ − 40y = 0
y(0) = 2
y′(0) = −1

Solution : The characteristic equation is

2r2 + 2r − 40 = 2(r2 + r − 20) = 2(r − 4)(r + 5) = 0.

This has two distinct roots, r = 4 and r = −5. That means the general
solution is

y(t) = Ae4t +Be−5t.

Using the initial values

2 = y(0) = A+B

−1 = y′(0) = 4A− 5B.

This implies that A = B = 1, and so the solution to the initial value problem

y(t) = e4t + e−5t.

�
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11. Lecture 11

Example 11.1. Setting up a spring-mass system.
Consider a mass m attached to a spring. The springs natural length is

` and when the mass is attached the length is ` + L. Let u(t) be vertical
position of the mass m at time t.

What are the forces acting on m? Write a differential equation for u.

Solution : Let u(t) denote the vertical position of the mass at time t where
u increases as we move upwards in the picture. We say that u = 0 when spring
is at its natural length. Then u′(t) is the velocity at time t and u′′(t) is the
acceleration at time t.

Hooke’s Law tells us that the force acting on a(n ideal) spring is propor-
tional to the distance from the spring’s natural length. That tells us that

Fspring(t) = −ku(t)

where k ≥ 0 is some constant called the spring constant, which depends
on the spring. The minus sign is there to tell you that when the mass m is
below the natural length (i.e. u(t) < 0) and so we want the force to point
upwards (the opposite direction of u).

There is also a damping force, which is proportional to the velocity at which
the object is moving. When the speed is large (velocity is large in absolute
value) the damping force acts to slow down the speed of the object. That
means, the damping force looks like:

Fdamping(t) = −γu′(t).
The only other ”natural” force acting on the object m is gravity, which is

easier to write as
Fgravity(t) = −mg

and here the minus sign means that gravity is pointing downwards (the op-
posite direction of up).

That takes care of all the forces that would be found in nature, but we can
also add a force to this system. This is called an external force, and is of the
form

Fexternal(t) = F (t)

Since forces add, we get

Ftotal = Fspring + Fdamping + Fgravity + Fexternal.

This gives a differential equation

mu′′ = −ku− γu′ −mg + F (t)

https://en.wikipedia.org/wiki/Hooke%27s_law
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or

mu′′ + γu′ + ku = F (t)−mg.
�

Remark 11.1. THIS IS IMPORTANT: The right-hand side is based on the
definition of where 0 was. If we changed where height u = 0 is, then the term
on the right-hand side will (very very likely) change.

Back to second order linear constant coefficient equations. We work with
the equation:

ay′′ + by′ + cy = 0.

The solution to this is based on the solutions to the polynomial equation

ar2 + br + c = 0.

The quadratic equation tells us

r =
−b±

√
b2 − 4ac

2a
.

We now have the following break-downs:

(1) b2−4ac > 0 then there are two distinct real roots and we already know
how to solve this differential equation.

(2) b2 − 4ac = 0 then there is a repeated root, and we will learn how to
solve the differential equation sometime soon.

(3) b2 − 4ac < 0 then there is are two distinct roots, but they are com-
plex numbers (that is involve imaginary numbers). The formulas still
work in this case, but we have to interpret what the exponential of an
imaginary number is.

Let’s deal first with the complex roots situation first. But in order to do
this, I’ll first need to state one important theorem

Theorem 11.1. Suppose that f is a function of (n+ 1)-variables, that is

f(x0, . . . , xn).

Consider the initial value problem{
y(n) = f(t, y, y′, y′′, . . . , y(n−1))

y(j)(t0) = yj for all j = 0, 1, . . . , n− 1
.

We have the following:
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(1) If f is continuous, then there exists an interval a < t0 < b and a
function y(t) such that

y(n)(t) = f
(
t, y(t), y′(t), y′′(t), . . . , y(n−1)(t)

)
for all t such that a < t < b and

y(t0) = y0, y
′(t0) = y1, · · · , y(n−1)(t0) = yn−1.

(2) Let fk be the kth partial derivative of f(x0, . . . , xn), that is

fk(x0, . . . , xn) =
∂f

∂xk
(x0, . . . , xn).

If fk for k = 0, 1, . . . , n are continuous then the solution that exists
from (1) is unique as well.

Remark 11.2. What this theorem says in English is that if f is nice, then
there exists solutions for a small amount of time (but there could be many).
If f is even nicer, then there exists a unique solution for a small amount of
time.

Example 11.2. This is an example of a differential equation which does not
have a unique solution.

Consider the initial value problem:{
y′ = y1/3

y(0) = 0
.

Here are infinitley many solutions to the differential equation:

y(t) = 0 and y(t) = ±
(

2

3
(t− a)

)3/2

where a ≥ 0.

Now we discuss (briefly) what complex numbers are.
A complex number z is a pair of real numbers x and y and is written

as z = x + iy, where i is a square root of −1. Complex numbers behave
(almost) exactly like real numbers except now there is a square root of −1.
For example, here are some properties of complex numbers

addition (a+ ib) + (c+ id) = (a+ c) + i(b+ d)

multiplication (a+ ib) · (c+ id) = (ac− bd) + i(bc+ ad)

exponentiation ezew = ez+w.

When z = x+ iy, we call x the real part of z and we write x = Re(z) and
we call y the imaginary part of y and write y = Im(z).
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Since ex+iy = exeiy we have to figure out what eiy means. Formally, lets try
to figure out what eiy should be.
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12. Lecture 12

Example 12.1. What is the solution of y′′ + y = 0?

Solution : Formally, the solution is c1e
r1t + c2e

r2t where r1 =
√
−1 and

r2 = −
√
−1. That tells us the solution is

y(t) = c1e
it + c2e

−it.

What are some other solutions to this differential equation?
Well

d2

dt2
sin(t) = − sin(t) and

d2

dt2
cos(t) = − cos(t).

That means we should be able to find two more constants a1 and a2 to say
that

y(t) = a1 sin(t) + a2 cos(t)

By the uniqueness theorem, we must be able to write

a1 sin(t) + a2 cos(t) = c1e
it + c2e

−it.

If we set y(0) = 1 and y′(0) = 0 then the solution is equal to cos(t). And
ei0 = e−i0 = e0 = 1, meaning c1 + c2 = 1. And if we differential e±it we
get ±ie±it. That means ic1 − ic2 = 0 and so c1 − c2 = 0. This tells us that
c1 = c2 = 1

2 . This tells us that

cos(t) =
eit + e−it

2
.

We can differentiate everything to get

− sin(t) =
ieit − ie−it

2
.

That means

sin(t) =
eit − e−it

2i
.

Therefore, we get

eit =
eit + e−it

2
+ i

eit − e−it

2i
= cos(t) + i sin(t).

�

Now we can discuss polar coordinates. Suppose I have z = x + iy and I
want to write that as reiθ then what are r and θ? Well, we set r =

√
x2 + y2
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and θ = arctan(y/x) which work. This works when x > 0, a different θ pops
up when x < 0. In particular, we can write

θ = π − arctan (−y/x) , x < 0.

Before continuing let’s compute a complex inverses

1

a+ ib
=

1

a+ ib
· a− ib
a− ib

=
a− ib
a2 + b2

.

Now consider the differential equation y′′ + 2y′ + 2 = 0
y(0) = 2
y′(0) = 4

.

Then we must find the roots of

x2 + 2x+ 2 = 0.

That means

x =
−2±

√
4− 8

2
= −1± i.

Thus the solutions are of the form:

y(t) = c1e
−(1+i)t + c2e

−(1−i)t = a1e
−t cos(t) + a2e

−t sin(t).

Differentiating this we get

y′(t) = −e−t (a1 cos(t) + a2 sin(t)) + e−t (−a1 sin(t) + a2 cos(t)) .

The left term on the right-hand side is just −y(t).
Thus

y(0) = a1 = 2

and
4 = y′(0) = −y(0) + e−0(a2) = −2 + a2

and so a2 = 6. Thus the solution is

y(t) = e−t (2 cos(t) + 6 sin(t)) .

Let’s try to solve this initial value problem 16y′′ − 8y′ + 145y = 0
y(0) = −2
y′(0) = 1

.

Well the characteristic equation is

16r2 − 8r + 145 = 0.
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The roots are 1
4 ± 3i. Therefore, the general solution is

c1e
( 14+3i)t + c2e

( 14−3i)t = et/4 (a1 cos(3t) + a2 sin(3t)) .

We compute

y′(t) =
1

4
y(t) + et/4 (−3a1 sin(3t) + 3a2 cos(3t)) .

Using y(0) = −2 we get a1 = −2. And using y′(0) = 1 we get

1 = y′(0) = −1

2
+ (3a2)

and so a2 = 1
2 .

Thus the solution is

y(t) = −2et/4 cos(3t) +
1

2
et/4 sin(3t).
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13. Lecture 13

Let’s review the complex roots situation. Suppose we have a differential
equation of the form:

ay′′ + by′ + cy = 0,

such that the discriminant b2 − 4ac < 0. That means there are two complex
roots

r =
−b±

√
b2 − 4ac

2a
= λ± iµ (say).

This means that the general solution looks like

y(t) = c1e
(λ+iµ)t + c2e

(λ−iµ)t.

In general these c1 and c2 will be such that the imaginary part y(t) is zero.
Alternatively, we can write

y(t) = a1e
λt cos(µt) + a2e

λt sin(µt).

In general, the sin and cos formula is easier to deal with when solving initial
value problems because there are fewer complex numbers to keep track of.

We now recall that we know of to solve ay′′+by′+cy = 0 when b2−4ac 6= 0.
We now discuss the situation when we have a repeated root, i.e. b2−4ac = 0.
This means the characteristic equation can be written as

a(r − λ)2 = 0, for some real number λ.

(You should try to prove why λ has to be a real number and not a complex
number.)

We claim that the general solution to the differential equation is

y(t) = a1e
λt + a2te

λt.

In order to demonstrate this lets use the existence and uniqueness theorems.
Let’s consider the initial value problem: y′′ − 2λy′ + λ2y = 0

y(0) = y0
y′(0) = y1

.

The characteristic equation is (r − λ)2 = 0 and so we claim the solution is
the one shown above. We first rewrite y as

y(t) = eλt(a1 + a2t).

Differentiating gives

y′(t) = λy(t) + a2e
λt
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and
y′′(t) = λy′(t) + a2λe

λt = λ2y(t) + 2λa2e
λt

Thus we have

y′′ − 2λy′ + λ2y =
(
λ2y + 2λa2e

λt
)
− 2λ

(
λy + a2e

λt
)

+ λ2y

= (λ2 − 2λ2 + λ2)y + (2λa2 − 2λa2)e
λt = 0.

Now we have to find an a1 and a2 that work. We note that

y0 = y(0) = a1

and
y1 = y′(0) = λy(0) + a2 = λy0 + a2,

thus the specific solution is

y(t) = y0e
λt + (y1 − λy0)teλt.

This is unique as well.

Example 13.1. Solve the initial value problem y′′ + 2y′ + y = 0
y(0) = 2
y(1) = 3

.

Solution : The characteristic equation is

r2 + 2r + 1 = (r + 1)2 = 0.

Thus the solution should be

y(t) = a1e
−t + a2te

−t.

We find a1 = y(0) = 2 and

3 = y(1) = 2e−1 + a2e
−1 =

2 + a2
e

Thus a2 = 3e− 2. This gives the solution as

y(t) = 2e−t + (3e− 2)te−t.

�
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14. Lecture 14

Before we turn to the damped harmonic oscillator problem, we’ll state
something that is useful for the homework. That is the definitions of sinh
and cosh. Specifically

sinh(x) =
ex − e−x

2

cosh(x) =
ex + e−x

2
.

Let’s consider the damped harmonic oscillator again without external forc-
ing. (See the discussion during lecture 11 for more details about how to set
up the differential equation.) We have the following second-order differential
equation:

mu′′ + γu′ + ku = −mg,
where m > 0, and γ, k ≥ 0. As a method of substitution (which we have not
covered in detail) we can consider the function

x(t) = u(t) +
mg

k
.

Then
x′ = u′ and x′′ = u′′.

We can then write

mx′′ + γx′ + kx = mu′′ +mu′ + ku+ k
mg

k
= 0.

We can solve this equation.
Let’s study what happens to solutions based on the value of γ2 − 4mk.

• γ2 − 4mk > 0 corresponds to the over-damped spring system. Since
γ ≥ 0 (and in this situation γ > 0) we have the roots to the character-
istic equation are distinct and negative.
• γ2 − 4mk = 0 corresponds to the critically damped spring system.

There is a repeated negative root.
• γ2 − 4mk < 0 and γ > 0 corresponds to the under-damped spring

system. The roots are complex conjugates of each other and the real
part is negative.
• γ = 0 corresponds to the un-damped spring system. The roots are

purely imaginary.

For those interested there is a similar phenomena which occurs in a closed
circuit, which relies on Kirchhoff’s law.
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(a) Over-damped (b) Critically damped

(c) Under-damped (d) Undamped

Figure 6. Types of damping

Let’s consider the γ2 − 4mk < 0 case where γ > 0. In this situation, we
can write

λ =
−γ
2m

and ω0 =

√
|γ2 − 4mk|

2m
,

so that the roots are
r1, r2 = λ± iω0.

That means the solution can be written as

x(t) = eλt (A cos(ω0t) +B sin(ω0t)) .

We recall the angle sum formula which says:

cos(α− β) = cos(α) cos(β) + sin(α) sin(β).

In particullar, if δ is a number then for all t,

cos(ω0t− δ) = cos(ω0t) cos(δ) + sin(ω0t) sin(δ).

So if R > 0 and R cos δ = A and R sin δ = B then we can re-write the solution
x(t) as

x(t) = Reλt cos(ω0t− δ) = Reλt cos (ω0(t− t0)) .
This form may be more familiar to those who have taken a physics class.
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15. Lecture 15

We’ll now move onto non-homogeneous constant coefficient second-
order linear differential equations. We have not discussed (in general)
what non-homogeneous differential equations are so don’t worry if you don’t
know what that word means.

So far we have worked on differential equations of the form (where I define
L[y] below):

L[y] := ay′′ + by′ + cy = 0.

We are going to call the general solution to this type of equation the ho-
mogeneous solution and denote that by yh. In particular, we have

yh(t) =

 c1e
r1t + c2e

r2t distinct real roots
eλt (c1 cos(µt) + c2 sin(µt)) distinct complex roots
c1e

rt + c2te
rt repeated root

,

and

L[yh] = 0.

The non-homogeneous problem is of the form

L[y] = f(t),

and then we want to find a particular solution yp(t) such that L[yp] = f(t). If
we can find such a yp, then we can solve any initial value problem involving
the differential equation L[y] = f(t), and the solution will be of the form

y(t) = yp(t) + yh(t).

There are three ways to find these particular solutions and they are

• Method of Undetermined Coefficients
• Laplace Transforms
• Variation of Parameters (not covered in this class)

We’ll discuss now, the method of undetermined coefficients. This works in
the case where the function f(t) is of the form

f(t) = p(t)ert or f(t) = ert (p(t) sin(ωt) + q(t) cos(ωt))

where p and q are polynomials and r and ω are numbers. It also works in
the case where f is the sum of things of the above form.
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Here are some examples of differential equations where undetermined coef-
ficients will work

y′′ + 2y′ − 6y = (2− t)e25t
y′′ − 2y′ + y = sin(3t) + cos(4t)
y + 2y′′ − 2y′ = et sin(t)

Let’s do a particular example.

Example 15.1. Find the particular solution yp to the differential equation

y′′ + 3y′ + 2y = (t− 2)e2t.

Solution : We notice that f(t) = (t − 2)e2t is of the desired form. The
polynomial is p(t) = t − 2, which is of degree 1, and the exponential is
e2t. We guess that the solution to this differential equation is of the form
yp(t) = (At + B)e2t, that is we take a degree 1 polynomial, and multiply it
by e2t.

Let’s differentiate yp. We get

y′p = Ae2t + 2(At+B)e2t

= e2t (2At+ A+ 2B)

y′′p = 2Ae2t + 2Ae2t + 4(At+B)e2t

= e2t (4At+ 4A+ 4B)

and so

y′′p + 3y′p + yp = e2t (12At+ 7A+ 12B) ,

and we want this to be

(t− 2)e2t.

That means

12A = 1 and 7A+ 12B = −2.

This tells us that A = 1
12 and B = −31

144 . That tells us the particular solution
is

yp(t) =

(
1

12
t− 31

144

)
e2t.

�

Example 15.2. Find the particular example of the differential equation

y′′ + 3y′ + 2y = (t2 − 2)e2t.
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Solution : Since f(t) = p(t)ert when p is a degree 2 polynomial, we expect
the particular solution to be

yp(t) = (At2 +Bt+ C)e2t.

We now compute derivatives

yp = e2t
(
At2 +Bt+ C

)
y′p = (2At+B)e2t + 2(At2 +Bt+ C)e2t

= e2t
(
2At2 + (2A+ 2B)t+ (B + 2C)

)
y′′p = 2e2t

(
2At2 + (2A+ 2B)t+ (B + 2C)

)
+ e2t (4At+ 2A+ 2B)

= e2t
(
4At2 + (8A+ 4B)t+ (2A+ 4B + 4C)

)
.

That means we have y′′p + 3y′p + 2yp is

e2t
(
12At2 + (14A+ 12B)t+ (2A+ 7B + 12C)

)
= e2t(t2 − 2).

Comparing coefficients is

12A = 1

14A+ 12B = 0

2A+ 7B + 12C = −2,

that means

A =
1

12

B =
−14

144
=
−7

72

C =
−107

864
.

That means the paritcular solution is

yp(t) =

{
1

12
t2 − 7

72
t− 107

864

}
e2t.

�

Example 15.3. Find the particular solution to:

y′′ + y′ + y = cos(t).
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Solution : This one is a little different than the exponential case. If we
guess the particular solution is of the form

yp(t) = A cos(t)

we end up with

y′′p + y′p + yp = −A cos(t)− A sin(t) + A cos(t) = −A sin(t),

which is not of the correct form. That means we have to look at a function
of the form

yp(t) = A cos(t) +B sin(t).

In this case

y′p(t) = B cos(t)− A sin(t) and y′′p(t) = −A cos(t)−B sin(t).

That means
y′′p + y′p + yp = B cos(t)− A sin(t),

and we want this to be

A sin(t) = 0 and B cos(t) = cos(t).

Setting A = 0 and B = 1 gives the result.
So the particular solution in this case is yp(t) = sin(t). �

In general in order to solve these types of problems you have to be patient
with the algebra and careful while differentiating. Here is a rough table of
the form of the right-hand side and the guess for a particular solution.

f(t) yp
ert Aert

sin(at) or cos(at) A sin(at) +B cos(at)
n∑
k=1

akt
k

n∑
k=1

bkt
k(

n∑
k=1

akt
k

)
ert

(
n∑
k=1

bkt
k

)
ert(

n∑
k=1

akt
k

)
cos(at) or

(
n∑
k=1

akt
k

)
sin(at)

(
n∑
k=1

bkt
k cos(at) + ckt

k sin(at)

)
(

n∑
k=1

akt
k

)
ert cos(at) or

(
n∑
k=1

akt
k

)
ert sin(at) ert

(
n∑
k=1

bkt
k cos(at) + ckt

k sin(at)

)
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16. Lecture 16

In this lecture we’ll discuss in more detail the differential equation corre-
sponding to forced harmonic oscillators without damping. These are
second ordered non-homogeneous differential equations. That is we’ll con-
sider the differential equations of the form

mu′′ + ku = F (t) where m > 0, k > 0.

We want these assumptions on k and m because otherwise it is very simple to
solve. These occur in spring systems when there is no damping, or in circuits
when there are no resistors.

In particular, we’ll be concerned mostly about the situation when the ex-
ternal forcing term F (t) is of the form F (t) = F0 cos(ωt). That means:

mu′′ + ku = F0 cos(ωt).

We’ll solve the homogeneous solution and notice that we get

r =
±
√
−4mk

2m
= ±i

√
k

m
,

and so the solution to the homogeneous equation is

uh(t) = c1 cos(ω0t) + c2 sin(ω0t), where ω0 =

√
k

m
.

The particular solution is of the form

up(t) = A cos(ωt) +B sin(ωt).

We find u′′p(t) = −ω2up(t) and so

mu′′p + kup =
(
k − ω2m

)
(A cos(ωt) +B sin(ωt)) ,

which we set it to F0 cos(ωt).
That means we have

A =
F0

k − ω2m
, and B = 0.

But there is a problem when k−ω2m = 0, which means ω2 = k
m , i.e. ω = ω0.

We’ll correct that problem in a little bit. However, we do get

u(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

m(ω2
0 − ω2)

cos(ωt) when ω 6= ω0.
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A problem occurs when ω = ω0, in that case the external forcing F0 cos(ω0t)
is a solution to the homogeneous solution. That means the particular solution
is (and you can check)

up(t) =
F0

2mω0
t sin(ω0t),

and the solution is

u(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0

2mω0
t sin(ω0t).

Let’s analyze some of these problems.

Example 16.1. Solve the initial value problem:

u′′ + u = −2 cos(3t), u(0) = u′(0) = 0.

Solution : We have ω0 = 1 and ω = 3, that is the case ω0 6= ω. Therefore
the general solution is

u(t) = c1 cos(t) + c2 sin(t) +
1

4
cos(3t).

We get 0 = u(0) = c1 + 1
4 and

0 = u′(0) = −c1 sin(0) + c2 cos(0)− 3

4
sin(3t) = c2.

So the solution is

u(t) =
1

4
(cos(3t)− cos(t)) .

It turns out that we can re-write this equation in the form

u(t) =

[
−1

2
sin(t)

]
sin(2t)

�

The behavior in the previous example is more general, that is if

mu′′ + ku = F0 cos(ωt), u′(0) = u(0) = 0 where ω0 6= ω,

then the general solution is of the form

u(t) =
F0

m(ω2
0 − ω2)

(cos(ωt)− cos(ω0t))

=

[
2F0

m(ω2
0 − ω2)

sin

(
ω0 − ω

2
t

)]
sin

(
ω0 + ω

2
t

)
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What happens when ω0 − ω is really small? Well, let’s consider the case
where

ω0 = 1 and ω = 0.9.

Then the solutions is of the form:

C sin(0.05t) sin(0.95t)

The sin(0.95t) terms oscillates much much more than the sin(0.05t) term.
Here’s an example that demonstrates the behavior

Figure 7. The red line is the solution and the dotted black line is the oscil-
lations corresponding to sin(0.05t).

The same does not occur in the solutions to in the case where ω0 = ω.
That’s because term t sin(ω0t) appearing in the solution begins to dominate
for large t. Here’s a graph of what happens
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Figure 8. The black solid line is the curve sin(t)+cos(t)+ 1
3
t sin(t). The blue

dotted line is the curve sin(t) + cos(t) and the green dotted line is 1
3
t sin(t).

As you can see in the figure, the green dotted line is very closely related to
the black curve. That’s because the t sin(t) term dominates. For larger values
of t the influence of the sin(t) + cos(t) term becomes much less influential.

Physically what’s happening here is that the external forcing matches the
oscillations of the spring system. So the external forcing is adding energy to
the system.
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17. Lecture 17

In this lecture we’ll consider the differential equation corresponding to
forced harmonic oscillators with damping. In particular, we’ll want
the forcing term to be periodic, and so we’ll consider the differential equa-
tions of the form:

mu′′ + γu′ + ku = F0 cos(ωt).

Before describing the general behavior of these problems, we’ll look at a
simple example.

Example 17.1. Consider the initial value problem

u′′ + u′ + 1.25u = 3 cos t,

and
u(0) = 2, u′(0) = 3.

What is the behavior of the solution for large t?

Solution : The characteristic equation is

r2 + r + 1.25 = 0 so r =
−1±

√
1− 5

2
= −1

2
± i.

So the solution to the homogeneous equation is of the form

uh(t) = c1e
−t/2 cos(t) + c2e

−t/2 sin(t).

We guess that the particular solution is of the form

up(t) = A cos(t) +B sin(t),

and we can check that

u′′p + u′p + up =

(
1

4
A+B

)
cos(t) +

(
−A+

1

4
B

)
sin(t).

We then find that A = 12
17 and B = 48

17 (you should check this).
That means the general solution to the differential equation is

c1e
−t/2 cos(t) + c2e

−t/2 sin(t) +
12

17
cos(t) +

48

17
sin(t).

Solving the initial value problem gives

u(0) = c1 +
12

17
= 2 and u′(0) = −1

2
c1 + c2 +

48

17
= 3,

and

u(t) =
22

17
e−t/2 cos(t) +

14

17
e−t/2 sin(t) +

12

17
cos(t) +

48

17
sin(t).
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H

Figure 9. The black line is u(t), the dotted blue line is uh(t) and the green
dotted line is up(t).

We note for large t, the e−t/2 term is really, really small so the dominating
term is the up(t). Here’s the graph

We notice that for t as small as 8 the graph of up(t) is practically the graph
of the actual solution. �

Let’s move to the general situation. That is we have the situation where

mu′′ + γu′ + ku = F0 cos(ωt) where m, γ > 0, k ≥ 0.

The roots of the characteristic equation are

r =
−γ ±

√
γ2 − 4mk

2m

and we can have various situations as outlined in lecture 14.
The general solution is of the form

u(t) = uh(t) + up(t).

Since γ 6= 0 we either get an over-damped system, critically damped system
or under-damped system. In any of those cases

lim
t→∞

uh(t) = 0.

Physically that means the influence of the homogeneous spring solution even-
tually has very little effect. We call the solution uh(t) a transient solu-
tion, because (depending on γ) the effect of uh(t) becomes undetectable very
quickly.
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In contrast, the up(t) never dies out, and so we call this the steady state
solution. In practice, it is very useful to express up(t) in terms of a single
trigonometric expression. We can write

up(t) = A cos(ωt) +B sin(ωt),

where we can find A and B by using the differential equation. Using various
trig identities, you can show that

up(t) = R cos(ωt− δ),
where

R =
F0

∆
, cos(δ) =

m(ω2
0 − ω2)

∆
, sin(δ) =

γω

∆
for

∆ =
√
m2(ω2

0 − ω2)2 + γ2ω2 and ω2
0 =

k

m
.

We can re-write

R =
F0

k

√(
1− ω2

ω2
0

)2
+ γ2ω2

mkω2
0

.

Observe that as ω → 0 the term R approaches F0

k and as ω →∞ the quantity
R→ 0.
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18. Lecture 18

Let’s review how to give meaning to the improper integral:

∫ ∞
a

f(t) dt.

If for each A > a the integral

∫ A

a

f(t) dt

exists AND the limit

lim
A→∞

∫ A

a

f(t) dt exists,

then we define ∫ ∞
a

f(t) dt = lim
A→∞

∫ A

a

f(t) dt

and we say that the integral
∫∞
a f(t) dt converges. If that limit does not

exist, or
∫ A
a f(t) dt doesn’t exist for some A then we say that the improper

integral diverges.

Example 18.1. Here are some improper integrals:

(1) If c 6= 0 then

∫ ∞
0

ect dt = lim
A→∞

∫ A

0

ect dt

= lim
A→∞

1

c
ect
∣∣∣A
0

= lim
A→∞

1

c
(ecA − 1) =

{
∞ c > 0
−1
c c < 0
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(2) If p > 0 then ∫ p

1

1

tp
dt = lim

A→∞

∫ A

1

t−p dt

= lim
A→∞

1

1− p
t1−p

∣∣∣∣∣
A

1

= lim
A→∞

A1−p − 1

1− p

=

{
∞ p ≤ 1
1
p−1 p > 1

.

In general, it is difficult to compute integrals explicitly. Sometimes we
want to know whether an improper integral exists even when computing a
definite example is difficult or impossible, but we still want to know whethe
an integral converges. For example consider∫ ∞

0

e−x
2

dx.

Does that integral converge? It turns out that it does, but it’s impossible to
actually find an explicit form for the integral∫ A

0

e−x
2

dx.

We do have this theorem which is useful:

Theorem 18.1. Suppose that f is a piecewise continuous function for t ≥ a.

(1) If |f(t)| ≤ g(t) for all t ≥M , then∫ ∞
a

g(t) dt converges implies that

∫ ∞
a

f(t) dt converges.

(2) If f(t) > g(t) for all t ≥M , then∫ ∞
a

g(t) dt diverges implies that

∫ ∞
a

f(t) dt diverges.

Remark 18.1. The good functions for comparison for the above theorem are
ect and t−p.
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We will now discuss integral transforms. In this context an integral
transform is integration against some kernel K(s, t), that is we focus on:

F (s) =

∫ β

α

K(s, t)f(t) dt.

In particular, we can look at K(s, t) = e−st and α = 0 and β = ∞. That
is, we’ll define the Laplace transform of f by the function of s defined by:

L(f)(s) =

∫ ∞
0

e−stf(t) dt.

Example 18.2. Let’s compute the Laplace transform of several functions.

(1) Let’s try f(t) = 1.

L(1)(s) =

∫ ∞
0

e−st dt =

{
∞ s ≤ 0
1
s s > 0.

.

(2) Let’s try f(t) = t, for s > 0 we get

L(t)(s) =

∫ ∞
0

e−stt dt

= lim
A→∞

∫ A

0

e−stt dt

= lim
A→∞

te−st

−s

∣∣∣∣∣
t=A

t=0

−
∫ A

0

e−st

−s
dt

= lim
A→∞

Ae−sA−s
−s

− e−st

s2

∣∣∣∣∣
t=A

t=0

= lim
A→∞

Ae−sA

−s
− e−sA

s2
+

1

s2

=

{
∞ s ≤ 0
1
s2 s > 0.

(3) Let’s try f(t) = eat for some number a.

L(eat)(s) =

∫ ∞
0

e−steat dt =

∫ ∞
0

e(a−s)t dt

=

{
1
s−a s > a
∞ s ≤ a
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(4) Let’s try when f(t) = sin(at) for some a. For s > 0 we have

L(sin(at))(s) =

∫ ∞
0

e−st sin(at) dt

= −1

a
e−st cos(at)

∣∣∣∣∣
t=∞

t=0

−
∫ ∞
0

s

a
e−st cos(at) dt

=
1

a
− s

a

(
1

a
e−st sin(at)

∣∣∣∣∣
∞

0

−
∫ ∞
0

−s
a
e−st sin(at) dt

)

=
1

a
− s

a

(s
a
L(sin(at))(s)

)
(1 +

s2

a2
)L(sin(at))(s) =

1

a
(a2 + s2)L(sin(at))(s) = a

L(sin(at))(s) =
a

s2 + a2
.

(5) Try to show that

L(cos(at)) =
s

a2 + s2
.

The previous theorem is useful if we want to know when a Laplace transform
exists:

Theorem 18.2. Suppose that f is piece-wise continuous function for all t ≥ 0
such that there exists some constant C and a such that |f(t)| ≤ Keat for all
t ≥M . Then

L(f)(s) exists for all s > a.

Question: Why would we look at this Laplace transform when this is a
class on differential equations?

Answer: Consider a function f which is differentiable and has derivative
f ′. Then integration by parts tells us the following∫ A

0

e−stf ′(t) dt = f(t)e−st

∣∣∣∣∣
t=A

t=0

−
∫ A

0

−se−stf(t) dt

= f(A)e−sA − f(0) + s

∫ A

0

e−stf(t) dt.
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If we can take the limits as A→∞ we can say that

L(f ′)(s) = sL(f)(s)− f(0)

provided that L(f)(s) exists and f(A)e−sA → 0 as A→∞.



71

19. Lecture 19:

Let’s start today’s lecture with an important formula. It may not seem
important now, but hopefully by the end of the class it will seem more useful.
It is the exponential shift formula. Suppose that L(f(t))(s) = F (s), then

L(eatf(t))(s) = F (s− a).

Indeed,

F (s− a) = L(f(t))(s− a) =

∫ ∞
0

e−(s−a)tf(t) dt

=

∫ ∞
0

e−steatf(t) dt = L(eatf(t))(s).

We finished last lecture with (part of) the statement of theorem

Theorem 19.1. Suppose that f has Laplace transform F (s). If f ′ is contin-
uous then

L(f ′(t))(s) = sF (s)− f(0).

If f ′′ is continuous then we can say

L(f ′′(t))(s) = s2F (s)− sf(0)− f ′(0).

Now we look at the second order differential equation

ay′′ + by′ + cy = f(t).

If L(y)(s) = Y (s) and L(f)(s) = F (s) then we can write

aL(y′′)(s) + bL(y′)(s) + cL(y)(s) = L(f)(s)

a
(
s2Y (s)− sy(0)− y′(0)

)
+ b (sY (s)− y(0)) + cY (s) = F (s)(

as2 + bs+ c
)
Y (s)− (asy(0) + ay′(0) + by(0)) = F (s)

F (s)

as2 + bs+ c
+
asy(0) + ay′(0) + by(0)

as2 + bs+ c
= Y (s).

If we can undo the Laplace transform then we can recover a solution y which
solves an initial value problem.

It turns out that in a lot of circumstances finding the inverse Laplace trans-
form is possible. If L(f(t))(s) = F (s) then we write L−1(F (s))(t) = f(t).

Computing inverse Laplace transforms often involves using partial fraction
decompositions and then using the Laplace transform table found in the
textbook.
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Example 19.1. If

F (s) =
3s

s2 − s− 6
,

then what is f(t) = L−1(F )(t)?

Solution : We start by finding the partial fraction decomposition. Since
(s2 − s − 6) = (s − 3)(s + 2) we want to find some constants A and B such
that

3s

s2 − s− 6
=

A

s− 3
+

B

s+ 2
In order to do this, we multiply everything by the denominator on the left-
hand side and get

3s = A(s+ 2) +B(s− 3).

If we plug in s = 3 we get

9 = 3 · 3 = A(3 + 2) +B(3− 3) = 5A,

implying that A = 9
5 . Similarly, if s = −2 we get

−6 = B(−5) so B =
6

5
.

This tells us that

F (s) =
9/5

s− 3
+

6/5

s+ 2
.

Since the Laplace transform is linear, its inverse is linear as well. That
means we can write:

L−1(F )(t) =
9

5
L−1

(
1

s− 3

)
(t) +

6

5
L−1

(
1

s+ 2

)
(t).

But since L(eat)(s) = 1
s−a we can say that

L−1
(

1

s− a

)
(t) = eat.

Meaning that

f(t) = L−1(F )(t) =
9

5
e3t +

6

5
e−2t.

�

Example 19.2. Find the inverse Laplace transform of F (s) = 2s−3
s2+2s+10 .
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Solution : We now that s2+2s+10 only has complex roots (22−4·1·10 < 0)
and so we cannot use partial fractions. Instead, we’ll complete the square.
That is we want to find an a and b such that

(s+ a)2 + b = s2 + 2s+ 10.

However,
(s+ a)2 + b = s2 + 2as+ a2 + b,

and so we can easily see that a = 1 and b = 10− 1 = 9. That means we have

2s− 3

s2 + 2s+ 10
=

2s− 3

(s+ 1)2 + 9
=

2(s+ 1)− 5

(s+ 1)2 + 9
.

We now want to find

L−1
(

2(s+ 1)

(s+ 1)2 + 9

)
(t) and L−1

(
−5

(s+ 1)2 + 9

)
(t).

We know that (using the exponential shift formula and the Laplace transform
table)

L(ebt cos(at))(s) =
(s− b)

(s− b)2 + a2
.

That means

L−1
(

2(s+ 1)

(s+ 1)2 + 32

)
(t) = 2L−1

(
(s+ 1)

(s+ 1)2 + 32

)
(t) = 2e−t cos(3t).

We also know that
L(ebt sin(at)) =

a

(s− b)2 + a2
.

That means we can say

L−1
(

−5

(s+ 1)2 + 9

)
(t) =

−5

3
L−1

(
3

(s+ 1)2 + 9

)
(t) = −5

3
e−t sin(3t).

Therefore, we can say

L−1(F )(t) = 2e−t cos(3t)− 5

3
e−t sin(3t).

�
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20. Lecture 20:

Let’s use the inverse Laplace transform to solve a few initial value problems.

Example 20.1. Solve the initial value problem

y′′ − y′ − 6y = 0 where y(0) = 1, y′(0) = −1.

Solution : Let Y (s) = L(y)(s). Then

L(y′′) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− s+ 1

and
L(y′) = sY (s)− y(0) = sY (s)− 1.

Hence, we have

L(y′′ − y′ − 6y) = (s2 − s− 6)Y (s)− s+ 1− 1 = 0.

That implies

Y (s) =
s

s2 − s− 6
=

A

s− 3
+

B

s+ 2
.

To find A and B we must solve

s = A(s+ 2) +B(s− 3)

and plugging in s = 3 and s = −2 gives

A =
3

5
and B =

2

5
.

Thus

Y (s) =
3/5

s− 3
+

2/5

s+ 2
.

This implies

L−1(Y )(t) =
3

5
e3t +

2

5
e−2t.

�
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Example 20.2. Solve the differential equation:

y′′ + y = sin(2t),

satisfying the initial value problem

y(0) = 2, y′(0) = 1.

Solution : Let’s use the method of Laplace transforms to solve this differ-
ential equation, even though we know how to solve it.

Let’s apply the Laplace transform, and let Y (s) = L(y)(s).
Since L(y′) = sY (s)− y(0) and L(y′′) = s2Y (s)− sy(0)− y′(0) and so

L (y′′ + y) (s) = (s2 + 1)Y (s)− sy(0)− y′(0) = L(sin(2t)) =
2

s2 + 4
.

Thus we arive at

Y (s) =
1

s2 + 1

[
2

s2 + 4
+ sy(0) + y′(0)

]
=

1

s2 + 1

[
2

s2 + 4
+ 2s+ 1

]
.

Simplifying gives

Y (s) =
2

(s2 + 1)(s2 + 4)
+

2s

s2 + 1
+

1

s2 + 1
.

We’ll focus on the first term on the right-hand side first, we have to write
that as

2

(s2 + 1)(s2 + 4)
=
As+B

s2 + 1
+
Cs+D

s2 + 4
.

That implies

2 = (As+B)(s2+4)+(Cs+D)(s2+1) = (A+C)s3+(B+D)s2+(4A+C)s+(4B+D).

That means

A+ C = 0, B +D = 0, 4A+ C = 0, 4B +D = 2.

We can see that A = C = 0. Since B = −D we get −3D = 2 and so

B =
2

3
and D =

−2

3
.

That means we can write

Y (s) =
5

3
· 1

s2 + 1
+
−1

3

2

s2 + 4
+ 2

s

s2 + 1
.

That means that

y(t) = L−1
(

5

3

1

s2 + 1
− 1

3

2

s2 + 4
+ 2

s

s2 + 1

)
=

5

3
sin(t)− 1

3
sin(2t) + 2 cos(t).
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�

Example 20.3. If L(y) = Y then what differential equation does Y solve for
the following differential equations:

y′′ − ty = 0 and y(0) = 1, y′(0) = 0.

and

(1− t2)y′′ − 2ty′ + α(α + 1)y = 0, and y(0) = 0, y′(0) = 1.

Solution : Let’s start with the first one.
We look at the table, and observe that if Y (s) = L(y)(s) then

L(−ty) = Y ′(s),

and

L(y′′) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− s.

Applying the Laplace transform to the entier differential equation gives

L(y′′ − ty) = s2Y (s)− s+ Y ′(s) = 0.

Therefore we get

Y ′ + s2Y = s.

From the table, we can get L(f)(s) = F (s) then L((−t)nf(t))(s) = F (n)(s).
The Laplace transform of y′ is

L(y′) = sY (s)− y(0) = sY (s)

and
d

ds
[L(y′)(s)] = Y (s) + sY ′(s).

Thus

L(−2ty′)(s) = 2 [L(−ty′)(s)] = 2
d

ds
[sY (s)] = 2Y (s) + 2sY ′(s).

Similarly, we get

L(y′′)(s) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− 1.
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We have to differentiate this twice, so

d

ds

[
s2Y (s)− 1

]
= 2sY (s) + s2Y ′(s)

d2

ds2
[
s2Y (s)− 1

]
=

d

ds

[
2sY (s) + s2Y ′(s)

]
= 2Y (s) + 2sY ′(s) + 2sY ′(s) + s2Y ′′(s)

= 2Y + 4sY ′ + Y ′′.

Thus we get

0 = L
[
(1− t2)y′′ − 2ty′ + α(α + 1)y

]
(s)

= L(y′′)− L(t2y′′) + 2L(−ty′) + α(α + 1)L(y)

=
[
s2Y (s)− 1

]
− [2Y + 4sY ′ + Y ′′] + 2 [Y + sY ′] + α(α + 1)Y

= −s2Y ′′ − 2sY ′ +
[
s2 + α(α + 1)

]
Y − 1.

That means
s2Y ′′ + 2sY ′ −

[
s2 + α(α + 1)

]
= −1

�
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Suppose that F (s) = L(f) and G(s) = L(g). Is there a formula for the
inverse Laplace transform of FG that is:

L−1(FG)(s)

The answer turns out to be yes, and it is given by something called a convo-
lution.

We define the operation ∗ by

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ) dτ.

Then,
L(f ∗ g)(s) = F (s)G(s).

Example 20.4. Find the inverse Laplace transform of

1

(s− 2)(s+ 1)
.

Solution : Is F (s) = 1
s−2 an G(s) = 1

s+1 then

L−1(F ) = e2t and L−1(G) = e−t.

That means the inverse Laplace transform of FG is

L−1(FG) =
(
e2t ∗ e−t

)
=

∫ t

0

e2τe−(t−τ) dτ.

That right-most integral is∫ t

0

e−te3τ dτ = e−t
(

1

3
e3τ
∣∣∣τ=t
τ=0

)
=

1

3
e−t
(
e3t − 1

)
=

1

3
e2t − 1

3
e−t.

�
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21. Lecture 21

Last time we covered how to solve initial value problems by using the
Laplace transform. One downside was that we only covered how to solve
initial value problems that we already knew how to solve, except this time
we used the machineary of the Laplace transform.

In order to extend this to handle other forcing functions we first want to
develop some tools to handle what happens to piece-wise continuous functions
when we apply the Laplace transform.

Let’s start with what happens to a particular piece-wise continuous func-
tion, the Heaviside function:

uc(t) =

{
0, t < c
1, t ≥ c

where c ≥ 0.

Well, we can apply the Laplace transform to uc and get

L(uc(t))(s) =

∫ ∞
0

e−stuc(t) dt =

∫ ∞
c

e−st dt =
1

s
e−cs.

Example 21.1. Write the function f as a constant plus a sum of Heaviside
functions:

f(t) =


2, 0 ≤ t < 4
4, 4 ≤ t < 7
−2, 7 ≤ t < 3π
1, t ≥ 3π

.

Solution : If we define f1(t) = 2, then f agrees with f1 for 0 ≤ t < 4. At
t = 4, however, f jumps by 2 units, and so to account for this with f1 we
define

f2(t) = 2 + 2u4(t).

This new function f2 agrees with f on the interval 0 ≤ t < 7. At t = 7 the
function f jumps by −6 and so we can define

f3(t) = 2 + 2u4(t)− 6u7(t),

and now f3 agrees with f for 0 ≤ t < 3π.
At 3π the function f jumps by 3 and so we can finally write

f(t) = 2 + 2u4(t)− 6u7(t) + 3u3π(t).

�
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These Heaviside functions will help us compute Laplace transforms of more
complicated functions. This is implicit in the next theorem, which is proved
by integration by parts (which you should try on your own):

Theorem 21.1. Let F (s) = L(f(t))(s). Let c ≥ 0. Then

L (uc(t)f(t− c)) (s) = e−csF (s).

Conversely, if f(t) = L−1(F ) then

uc(t)f(t− c) = L−1
(
e−csF (s)

)
.

Example 21.2. Compute the Laplace transform of the function:

f(t) =

{
sin(t) 0 ≤ t < π/4
sin(t) + cos(t− π/4) π/4 ≤ t

.

Solution : We first have to compute f as the sum of several functions
multiplied by Heaviside functions.

If we define f1(t) = sin(t) then f(t) agrees with f1 for all t < π/4.
For t ≥ π/4 the function f is cos(t−π/4)+f1(t). That means we can write

f(t) = sin(t) + uπ/4(t) (cos(t− π/4)) .

Thus

L(f) = L(sin(t)) + L
(
uπ/4(t) cos(t− π/4)

)
.

We know that

L(sin(t)) =
1

s2 + 1
.

According to the previous theorem, we get

L(uπ/4(t) cos(t− π/4)) = e−πs/4L(cos(t)) =
e−πs/4s

s2 + 1
.

Thus

L(f)(s) =
1 + e−πs/4s

s2 + 1
.

�

Example 21.3. Compute the inverse Laplace transform of

F (s) =
1− e−2s

s2
.
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Solution : We note that the

L−1( 1

s2
) = t.

So we just need to compute the inverse Laplace transform of

e−2s/s2.

By that previous theorem

L−1
(
e−csF (s)

)
= uc(t)f(t− c) where f(t) = L−1(F (s)).

Thus we get
L−1(e−2s/s2) = u2(t) · (t− 2).

That means

L−1(F (s)) = t− u2(t) · (t− 2) =

{
t t < 2
2 t ≥ 2

.

�
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22. Lecture 22

Example 22.1. Let

g(t) =

 0 : t < 5
1 : 5 ≤ t < 20
0 : 20 ≤ t

.

Find a solution to the initial value problem:

2y′′ + y′ + 2y = g(t)

where
y(0) = y′(0) = 0.

Solution : We clearly do not know how to solve this using the methods
already discussed. So we’ll apply the Laplace transform with Y (s) = L(y)
and see what we get

L(y′′) = s2Y (s)− sy(0)− y′(0) = s2Y (s) L(y′) = sY (s)− y(0) = sY (s).

Moreover, we can write

g(t) = u5(t)− u20(t),
and so

L(g) =
1

s

(
e−5s − e−20s

)
.

Combing this we can write

(2s2 + s+ 2)Y (s) =
e−5s − e−20s

s
,

and so

Y (s) =
e−5s − e−20s

s(2s2 + s+ 2)
= (e−5s − e−20s)H(s),

where

H(s) =
1

s(2s2 + s+ 2)
2s2 + s+ 2.

If we can find an h(t) = L−1(H(s))(t) then we can write:

y(t) = L−1(Y ) = L−1
(
(e−5s − e−20s)H(s)

)
= u5(t)h(t− 5)− u20(t)h(t− 20).

We want to write:

H(s) =
A

s
+

Bs+ C

2s2 + s+ 2
,

where we can find A, B and C by solving

1 = A(2s2 + s+ 2) + (Bs+ C) · s = (2A+B)s2 + (A+ C)s+ 2A
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.
That means A = 1

2 , C = −1
2 and B = −1.

So we get

H(s) =
1/2

s
+
−s− 1

2

2s2 + s+ 2
.

We have to complete the square on the right-most denominator and which
makes

2s2 + s+ 2 = 2

(
s2 +

1

2
s+ 1

)
= 2

(
(s+

1

4
)2 +

15

16

)
.

That makes

−s− 1
2

2s2 + s+ 2
=

1

2
·

−s− 1
2(

s+ 1
4

)2
+
(√

15
4

)2
=
−1

2

s+ 1
4(

s+ 1
4

)2
+
(√

15
4

)2 − 1

2

1
4(

s+ 1
4

)2
+
(√

15
4

)2
= −1

2

s+ 1
4(

s+ 1
4

)2
+
(√

15
4

)2 − 1

2
√

15
·

√
15
4(

s+ 1
4

)2
+
(√

15
4

)2 .
Thus

H(s) =
1

2

1

s
−

s+ 1
4(

s+ 1
4

)2
+
(√

15
4

)2 − 1√
15
·

√
15
4(

s+ 1
4

)2
+
(√

15
4

)2
 ,

and so

L−1(H(s)) =
1

2

[
1− e−t/4 cos

(√
15

4
t

)
− 1√

15
e−t/4 sin

(√
15

4
t

)]
This allows us to write a (fairly complicated) explicit solution to that differ-
ential equation. �

Remark 22.1. There is, as is usually the case in mathematics, another way
to solve this problem. We could solve three separate initial value problems
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with the differential equations:

2y′′j + y′j + 2yj = 0 for j = 1, 3

2y′′2 + y′2 + 2y2 = 1

and the initial values are defined iteratively as follows:

y1(0) = 0 y′1(0) = 0

y2(5) = y1(5) y′2(5) = y′1(5)

y3(20) = y2(20) y′3(20) = y′2(20).

Then if we define the function

y(t) =

 y1(t) 0 ≤ t < 5
y2(t) 5 ≤ t < 20
y3(t) 20 ≤ t

,

the function y satisfies the differential equation prescribed in the previous
example.

This comment from the text is very useful:

Although it may be helpful to visualize the solution ... composed
of solutions of three separate initial value problems in three sepa-
rate intervals, it is somewhat tedious to find the solution by solv-
ing these separate problems. Laplace transform methods provide
a much more convenient and elegant approach to this problem
and to others having discontinuous forcing functions.

Example 22.2. Consider the differential equation:

y′′ + 4y = g(t), y′(0) = y(0) = 0,

where

g(t) =

 0 0 ≤ t < 5
t−5
5 5 ≤ t < 10

1 t ≥ 10.
.

Find the solution y(t).

Solution : The easiest way we know how to solve this is by Laplace trans-
forms. So in order to do this we must find g(t) as a sum of functions multiplied
by Heaviside functions.
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If g1(t) = u5(t) ·
(
t−5
5

)
then g1 agrees with g on [0, 10] (where we include

10 because the function g is actually continuous). Afterwards, g(t) is the
constant value 1, so if we consider

g2(t) = u5(t)·
(
t− 5

5

)
+u10(t)·

(
1− t− 5

5

)
= u5(t)·

(
t− 5

5

)
−u10(t)·

(
t− 10

5

)
Then we can check that g2 agrees with g for all t ≥ 0.

If f(t) = t then we can write

g(t) =
1

5
[u5(t)f(t− 5)− u10(t)f(t− 10)] ,

which allows for an ”easy” computation of the Laplace transform of g. Namely,
we get

L(g) =
1

5
L (u5(t)f(t− 5))− 1

5
L (u10(t)f(t− 10))

=
1

5
e−5sL(f)− 1

5
e−10sL(f)

=
e−5s − e−10s

5
· 1

s2
.

With the initial conditions, the left-hand side of the differential equation
becomes

L(y′′ + 4y) = (s2 + 4)Y (s),

where Y (s) = L(y)(s).
We therefore get (and define H)

Y (s) =
e−5s − e−10s

5
· 1

s2(s2 + 4)
=
e−5s − e−10s

5
H(s).

Doing the same thing, we wish to find an h(t) = L−1(H)(t) and then we
can write

y(t) =
1

5
[u5(t)h(t− 5)− u10(t)h(t− 10)] .

To compute the inverse Laplace transform of H we write

1

s2(s2 + 4)
=
A

s
+
B

s2
+
Cs+D

s2 + 4
,

leading to the equation

1 = As(s2 + 4) +B(s2 + 4) + (Cs+D)s2.

The right-hand side can be expanded to get

(A+ C)s3 + (B +D)s2 + 4As+ 4B,
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meaning that B = 1
4 , A = 0 C = 0 and D = −1

4 and so

H(s) =
1/4

s2
− 1/4

s2 + 4
=

1

4
· 1

s2
− 1

8
· 2

s2 + 22
,

and so the inverse Laplace transform is

h(t) =
1

8
[2t− sin(2t)] .

�
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23. Lecture 23

We now move onto modeling something called the Dirca delta function,
denoted δ(t), which is not technically a function. Let’s start with a function

dτ(t) =

{
1
2τ |t| < τ
0 |t| ≥ τ.

.

This function dτ is an actual function and

I(τ) :=

∫ τ

−τ
dτ(t) dt = 1

is defined for all τ > 0. We also observe:

lim
τ→0+

dτ(t) = 0 for all t 6= 0,

and

lim
τ→0+

I(τ) = 1.

This means that the “limit function” of dτ , which we write as δ(t), should
satisfy the following:

δ(t) = 0, if t 6= 0 and

∫ ∞
−∞

δ(t) dt = 1.

Similarly, we write δ(t− t0) for the function

δ(t− t0) = 0, if t 6= t0 and

∫ ∞
−∞

δ(t− t0) dt = 1.

What does the function δ(t) represent? It is supposed to represent (in this
situation) a force that occurs at a single instance. For example, (and this does
not apply directly to differential equations, but instead to partial differential
equations) how sound waves propagate is governed by some physical differ-
ential equations. If you walk into a large building, such as a cathedral, with
a balloon and pop it, the “force” term is approximated by a delta-function.
That is because the balloon produces a very loud noise over a very short
period of time.

Let’s try to compute some things about the δ function. For example what
is (for continuous f) ∫ ∞

−∞
f(t)δ(t− t0) dt?
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Well since δ = limτ→0 dτ , we expect∫ ∞
−∞

f(t)δ(t− t0) dt = lim
τ→0

∫ ∞
−∞

f(t)dτ(t− t0) dt

= lim
τ→0

1

2τ

∫ t0+τ

t0−τ
f(t) dt

and for any a < b there exists some t∗ between a and b such that∫ b

a

f(t) dt = (b− a)f(t∗).

That means
1

2τ

∫ t0+τ

t0−τ
f(t) dt = f(t∗τ),

where t∗τ is between t0 − τ and t0 + τ . And so as τ goes to 0, the value of t∗τ
converges to t0.

Therefore ∫ ∞
−∞

f(t)δ(t− t0) dt = lim
τ→0

f(t∗τ) = f(t0).

If t0 > 0 then for τ small enough dτ(t − t0) = 0 for all t ≤ 0, and so the
above actually can be stated as∫ ∞

0

f(t)δ(t− t0) dt = f(t0) if t0 > 0.

Example 23.1. Compute the Laplace transform of δ(t− t0), for t0 > 0.

Solution : Well we have

L(δ(t− t0))(s) =

∫ ∞
0

e−stδ(t− t0) dt.

This means that we can use the previous computations to show that∫ ∞
0

e−stδ(t− t0) dt = e−st0.

That is exactly
est0 = sL(ut0(t))(s)− ut0(0),

and the right-hand side is (formally) the Laplace transform of the derivative
of ut0(t). �

Example 23.2. Compute the solutions of

y′′ + 2y′ + y = δ(t− 10), y(0) = y′(0) = 0.
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Solution : We observe that based on the initial conditions we have

L (y′′ + 2y′ + y) (s) = s2Y (s) + 2sY (s) + Y (s) = (s+ 1)2Y (s).

The right-hand side has Laplace transform

L(δ(t− 10))(s) = e−10s.

Thus

Y (s) =
e−10s

(s+ 1)2
= e−10sH(s),

where H(s) = (s+1)−2, which is already in it’s partial fraction decomposition.
The inverse Laplace transform of H(s) is

L(H)(t) = te−t,

and so
y(t) = u10(t)(t− 10)e−(t−10).

Note that te−t solves the initial value problem

u′′ + 2u′ + u = 0 and u(0) = 0, u′(0) = 1.

So the solution y(t) satisfies:{
y′′ + 2y′ + y = 0, y(0) = 0, y′(0) = 0 : 0 ≤ t < 10
y′′ + 2y′ + y = 0, y(10) = 0, y′(10) = 1 : 10 ≤ t

.

So we can view this δ function as changing the velocity instantly. �
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24. Lecture 24:

We state a theorem about Laplace transforms:

Theorem 24.1. Suppose that L(f)(s) = F (s) and L(g)(s) = G(s) for all
s > a ≥ 0. Then H(s) = F (s)G(s) is the Laplace transform of a funciton
h(t) defined by

h(t) =

∫ t

0

f(t− τ)g(τ) dτ = (f ∗ g)(t).

Here are some properties of the convolution

f ∗ g = g ∗ f
f ∗ (ag + bh) = a(f ∗ g) + b(f ∗ h)

f ∗ 0 = 0 ∗ f = 0

f ∗ (g ∗ h) = (f ∗ g) ∗ h.

Example 24.1. Compute the inverse Laplace transform of

a

s2(s2 + a2)
.

Solution : We can either use partial fractions to solve this or we can use
the convolution previously discussed. We set F (s) = 1

s2 and G(s) = a
s2+a2 .

We wish to find the inverse Laplace transform of

F (s)G(s) =
a

s2(s2 + a2)
.

It’s easy to see that L−1(F ) = f(t) = t and g(t) = L−1(G) = sin(at).
Thus

L−1(FG) = (f ∗ g)(t).
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We try to compute the convolution

f ∗ g(t) =

∫ t

0

(t− τ) sin(aτ) dτ

=

∫ t

0

t sin(aτ)− τ sin(aτ) dτ∫ t

0

τ sin(aτ) dτ =
−1

a
τ cos(aτ)

∣∣τ=t
τ=0

+
1

a

∫ t

0

cos(aτ) dτ

= −t cos(at)

a
+

1

a2
sin(at)

t

∫ t

0

sin(aτ) dτ =
−t
a

cos(at) +
t

a
.

Thus

L−1
(

a

s2(s2 + a2)

)
(t) = f ∗ g(t) =

at− sin(at)

a2
.

�



92

Let’s see the power of the convolution:

Example 24.2. Solve the initial value problem

y′′ + 49y = g(t)

and
y′(0) = 3, y(0) = −1.

Solution : We write the Laplace transform of g as G(s) = L(g)(s) and
Y (s) = L(y)(s).

Then
L(y′′) = s2Y (s) + s− 3.

Therefore,
s2Y (s) + s− 3 + 49Y (s) = G(s),

and rewriting this gives

Y (s) =
3− s
s2 + 49

+
1

s2 + 49
G(s).

If we write Φ(s) = 3−s
s2+4 and H(s) = 1

s2+4 , then we can rewrite

Y (s) = Φ(s) +H(s)G(s).

We can write

Φ(s) =
3

7

7

s2 + 49
− s

s2 + 49
That means

φ(t) = L−1(Φ)(t) =
3

7
sin(7t)− cos(7t).

Similarly,

h(t) = L−1(H)(t) =
1

7
sin(7t).

Thus we can write

y(t) = φ(t) + (h ∗ g)(t) =
3

7
sin(7t)− cos(7t) +

1

7

∫ t

0

sin(7(t− τ))g(τ) dτ.

�

This property works in general. Suppose that

ay′′ + by′ + cy = g(t), y(0) = y0, y′(0) = y′0.

Then we can take the Laplace transforms of both sides to get

(as2 + bs+ c)Y (s)− (ay0s+ by′0 + ay0) = G(s).
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We can re-write this as

Y (s) =
ay0s+ by′0 + ay0
as2 + bs+ c

+
1

as2 + bs+ c
·G(s).

If

Φ(s) =
ay0s+ by′0 + ay0
as2 + bs+ c

and

H(s) =
1

as2 + bs+ c
,

then
Y (s) = Φ(s) +H(s)G(s).

Letting φ and h be the inverse Laplace transforms of Φ and H respectively
allows us to write

y(t) = φ(t) + (h ∗ g)(t).

What do these functions represent?
The function φ(t) ends up solving the initial value problem

ay′′ + by′ + cy = 0 y(0) = y0 y′(0) = y′0.

This term is where the initial conditions come into play.
The function h ends up solving this initial value problem

ay′′ + by′ + cy = δ(t) y(0) = y′(0) = 0.
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